Predicting survival for hepatic arterial infusion chemotherapy of unresectable colorectal liver metastases: Radiomics analysis of pretreatment computed tomography

Author:

Liu Peng12,Zhu Haitao1,Zhu Haibin1,Zhang Xiaoyan1,Feng Aiwei2,Zhu Xu2,Sun Yingshi1

Affiliation:

1. Department of Radiology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Beijing , China

2. Department of Interventional Therapy, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) , Beijing , China

Abstract

Abstract Objective Hepatic arterial infusion chemotherapy (HAIC) is an effective treatment for advanced unresectable colorectal cancer liver metastases (CRLM). This study was conducted to predict the efficacy of HAIC in patients with unresectable CRLM by radiomics methods based on pretreatment computed tomography (CT) examinations and clinical data. Materials and Methods A total of 63 patients were included in this study (41 in the training group and 22 in the validation group). All these patients underwent CT examination before HAIC. During the follow-up period, CT scans and laboratory examinations were performed regularly. Eighty-five radiological features were extracted from the regions of interest (ROIs) of CT images using the PyRadiomics program. The t-test and correlation were applied to select features. These features were analyzed using LASSO-Cox regression, and a linear model was developed to predict overall survival (OS). Results After reducing features by t-test and correlation test, seven features remained. After LASSO-Cox cross-validation, four features remained at λ = 0.232. They were gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), neighborhood gray tone difference matrix (NGTDM), and the location of the primary tumor. The C-index was 0.758 in the training group and 0.743 in the test group. Nomograms predicting 1-, 2-, and 3-year survival were established. Conclusion Our study demonstrates that a radiomics approach based on pretreatment CT texture analysis has the ability to predict early the outcome of HAIC in patients with advanced unresectable colorectal cancer with a high degree of accuracy and feasibility.

Publisher

Walter de Gruyter GmbH

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3