Structural and Optical Properties of Aluminium Nitride Thin Films Fabricated Using Pulsed Laser Deposition and DC Magnetron Sputtering on Various Substrates

Author:

Virt Ihor1,Potera Piotr2,Wisz Grzegorz2,Dziedzic Andrzej3,Cieniek Bogumił2,Lopatynskyi Ivan4,Frugynskyi Marian4

Affiliation:

1. Drohobych State Pedagogical University , Drohobych , Ukraine

2. Institute of Materials Engineering, College of Natural Sciences , University of Rzeszow , Poland

3. Institute of Physics, College of Natural Sciences , University of Rzeszow , Poland

4. Lviv Polytechnic National University , Lviv , Ukraine

Abstract

Abstract Aluminium nitride thin films were fabricated using pulsed laser deposition and DC magnetron sputtering. Different technological parameters and the effects of different substrates on the optical and structural parameters of AlN samples were studied. An X-ray diffraction study was performed for the layer deposited on the Si3N4 substrate. A high-energy electron diffraction study was also carried out for the layer deposited on a KCl substrate. Transmission spectra of layers on quartz, sapphire, and glass substrates were obtained. An evaluation of the optical band gap of the obtained layers was carried out (Eg form 3.81 to 5.81 eV) and the refractive index was calculated (2.58). The relative density of the film (N1TN-AlN sample) is 1.26 and was calculated using the Lorentz-Lorentz relationship. Layers of aluminium nitride show an amorphous character with a polycrystalline region. It was shown that the properties of AlN films strongly depend on the method, growth conditions, and substrate used.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3