Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: a review
Author:
Litoborska Joanna1, Piotrowski Tomasz2ORCID, Jodda Agata1, Malicki Julian2
Affiliation:
1. Medical Physics Department, Greater Poland Cancer Centre , Garbary 15, 61-866 Poznan , Poland 2. Medical Physics Department, Greater Poland Cancer Centre , Garbary 15, 61-866 Poznan , Poland and Department of Electroradiology , Poznan University of Medical Sciences , Garbary 15, 61-866 Poznan , Poland
Abstract
Abstract
Background and objectives: This study describes the treatment planning and dose delivery methods of radiotherapy for patients undergoing bone marrow transplantation. The analysis was carried out in the context of the evolution of these methods over the last 60 years.
Materials and methods: A systematic literature search was carried out using the PubMed search engine. Overall, 90 relevant studies were included: 24 general studies, 10 describing isotopes usage, 24 related to conventional and 32 to advanced methods.
Results: The analysis of the evolution of radiotherapy methods shows how significantly the precision of dose planning methods and its delivery have changed. The atypical positioning caused by geometrical requirements for applications of isotopes or conventional techniques has been replaced by positioning on a therapeutic couch, which allows a more precise setup of the patient that is necessary for an exact delivery of the planned dose. The dose can be fully optimized and calculated on tomographic images by algorithms implemented in planning systems. Optimization process allows to reduce doses in organs at risk. The accuracy between planned and delivered doses can be checked by pretreatment verification methods, and the patient positioning can be checked by image guidance procedures.
Interpretation and conclusions: Current radiotherapy solutions allow a precise delivery of doses to the planning target volume while reducing doses to organs at risk. Nevertheless, it should be kept in mind that establishing radiotherapy as an important element of the whole therapeutic regimen resulted from the follow-up of patients treated by conventional techniques. To confirm the clinical value of new advanced techniques, clinical trials are required.
Publisher
Walter de Gruyter GmbH
Subject
Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Reference87 articles.
1. 1. Wong, J. Y. C., Filippi, A. R., Dabaja, B. S., Yahalom, J., & Specht, L. (2018). Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys., 101, 521–529. DOI: 10.1016/j. ijrobp.2018.04.071. 2. 2. Paix, A., Antoni, D., Waissi, W., Ledoux, M. P., Bilger, K., Fornecker, L., & Noel, G. (2018). Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: A review. Crit. Rev. Oncol. Hematol., 123, 138–148. DOI: 10.1016/j.critrevonc.2018.01.011.10.1016/j.critrevonc.2018.01.011 3. 3. Lin, H. S., & Drzymala, R. E. (2003). Total body irradiation. In C. A. Perez & L. W. Brady (Eds.), Principles and practice of radiation oncology (pp. 333–342). Philadeplphia: Lippincott-Raven. 4. 4. Wolden, S. L., Rabinovitch, R. A., Bittner, N. H. J., Galvin, J. M., Giap, H. B., Schomberg, P. J., & Rosenthal, S. A. (2013). American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice guideline for the performance of total body irradiation (TBI). J. Clin. Oncol., 36, 97–101. DOI: 10.1097/COC.0b013e31826e0528.10.1097/COC.0b013e31826e0528 5. 5. Bieri, S., Helg, C., Chapuis, B., & Miralbell, R. (2001). Total body irradiation before allogeneic bone marrow transplantation: is more dose better? Int. J. Radiat. Oncol. Biol. Phys., 49, 1071–1077.10.1016/S0360-3016(00)01491-7
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|