Establishment and application of a reverse dot blot assay for 13 mutations of hearing-loss genes in primary hospitals in China

Author:

Jiang Qing-Qing1,Zhu Juan-Juan2,Fan Shu-Ling3,Hou Ya-Ping1,Hu Xie-Ying1,Shi Jie4,Wu Lei1,Luo Ying1

Affiliation:

1. Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital , East China Normal University , Shanghai , China

2. Chaozhou Hybribio Limited Corporation , Guangdong , China

3. Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai , China

4. Nanjing Red Cross Blood Center , Nanjing , Jiangsu , China

Abstract

Abstract Background Hearing loss is a common sensorineural dysfunction with a high incidence in China. Although genetic factors are important causes of hearing loss, hearing-related gene detection has not been widely adopted in China. Objective Establishing a rapid and efficient method to simultaneously detect hotspot hearing loss gene mutations. Methods A reverse dot blot assay combined with a flow-through hybridization technique was developed for the simultaneous detection of 13 hotspot mutations of 4 hearing loss–related genes including GJB2, GJB3, SLC26A4, and the mitochondrial gene MT-RNR1. This method involved PCR amplification systems and a hybridization platform. Results The technique can detect 13 hotspot mutations of 4 hearing loss–related genes. And a total of 213 blood samples were used to evaluate the availability of this method. Discussion Our reverse dot blot assay was a simple, rapid, accurate, and cost-effective method to identify hotspot mutations of 4 hearing loss–related genes in a Chinese population.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3