Theoretical investigations into the Spectrophotometrically Analyzed Niobium (V)-6-Chloro-3-hydroxy-7-methyl-2-(2’-thienyl)-4H-chromen-4-one Complex

Author:

Dhonchak Chetna1,Agnihotri Nivedita1,Azam Mohammad2,Javed Saleem3,Muthu Sambantham4,Al-Resayes Saud I2,Min Kim5

Affiliation:

1. 1 Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana, Ambala-133207, Haryana , India

2. 2 Department of Chemistry, College of Science , King Saud University , PO Box 2455, Riyadh 11451 , Saudi Arabia

3. 3 Department of Chemistry, Jamia Milia Islamia , New Delhi , India

4. 4 Department of Physics , Aringnar Anna Govt. Arts College , Cheyyar - , India

5. 5 Department of Safety Engineering , Dongguk University , 123 Dongdae-ro, Gyeongju 780714 , Gyeongbuk , South Korea

Abstract

Abstract Pentavalent niobium cation forms a stable yellow-colored binary complex with 6-chloro-3-hydroxy-7-methyl-2-(2’-thienyl)-4H-chromen-4-one (CHMTC) in the ratio of 1:2. The complex is quantitatively extractable into carbon tetrachloride from HClO4 solution maintained at pH 1.26–1.75 and strictly adheres to Beer’s law as verified by the Ringbom plot with an optimized range of determination as 0.385–1.211 ppm of Nb(V). The ligand-metal complex system shows good precision, accuracy, sensitivity, and selectivity and handles satisfactorily the analysis of several samples of varying complexity. The results are highly reproducible as confirmed by statistical data. The stability of the complex is theoretically confirmed with the help of HOMO-LUMO values and the energy gap [for CHMTC, ΔE gap = 3.62 V and for Nb(V)-CHMTC Complex, ΔE gap = 2.97 eV]. The reactivity descriptors were calculated for detailed computational study to probe into the chemical behavior of the studied ligand and its complex. Further, mapped electrostatic potential diagrams help in justifying the donor sites of CHMTC ligand which is in accordance with the analytical findings.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3