The parp-1 and bax genes as potential targets for treatment of the heart functioning impairments induced by type 1 diabetes mellitus

Author:

Kuchmerovska Tamara1,Guzyk Mykhailo1,Tykhonenko Tetiana1,Yanitska Lesya2,Pryvrotska Irina3,Diakun Kateryna1

Affiliation:

1. Department of Vitamin and Coenzyme Biochemistry , Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine , Kyiv , Ukraine

2. Bogomolets National Medical University , Kyiv , Ukraine

3. Horbachevsky Ternopil State Medical University , Ministry of Public Health of Ukraine , Ternopil , Ukraine

Abstract

Abstract Objectives. The present study was designed to assess whether apoptosis-related genes as parp-1 and bax could be targets for treatment of diabetes mellitus and whether vitamin D may exert beneficial effects. Methods. Vitamin D3 treatment for 4 weeks, starting after 4 weeks of the diabetes duration. The expression of parp-1 and bax genes was estimated on mRNA levels using real time quantitative polymerase chain reaction. Results. After 8 weeks, diabetic rats had weight loss, while blood glucose was increased about 4.9-fold compared to control group. Vitamin D3 administration to diabetic animals had no effect on these parameters. It was found that total serum alkaline phosphatase activity was significantly elevated in diabetic rats as compared to control animals and was restored by vitamin D3. Diabetes was accompanied by reduction of nicotinamidadenindinucleotide, a substrate of poly-ADP-ribosylation, level by 31.7% as compared to control rats, which was not reversed in response to vitamin D3 treatment. In diabetic hearts, the mRNA expression level of parp-1 gene was 2.8-fold higher compared to control rats and partially decreased by vitamin D3 treatment. Less significant alterations were observed in diabetic hearts for the mRNA expression level of bax gene that was 2.0-fold higher compared to control animals and vitamin D3 normalized it. These results indicate that cardiomyocytes have a tendency to apoptosis. Conclusions. The findings suggest that investigated genes can be targets at the transcriptional level for vitamin D action that may be contributed to the improving metabolic/signaling pathways induced by diabetes mellitus.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3