Salivary Gland Protein Expression after Bion-M1 and Space Shuttle STS-135 Missions

Author:

Mednieks Maija1,Khatri Aditi1,Hand Arthur R.2

Affiliation:

1. 1 Department of Oral Health and Diagnostic Sciences Florida United States ;

2. 2 Department of Craniofacial Sciences , University of Connecticut School of Dental Medicine , Farmington, CT United States

Abstract

ABSTRACT Secretory proteins produced by salivary glands are stored in granules and released into saliva. Rodent salivary glands are a reliable experimental model because they are morphologically and functionally similar to those of humans. To determine if the effects of microgravity on secretory proteins are increased on extended flights, their expression in mouse parotid glands, morphological, immunocytochemical, and biochemical/molecular methods were employed. Acinar cells of STS-135 (13 day) and Bion-M1 (30 day) flight animals showed an increase of autophagy and apoptosis, while duct cells contained vacuoles with endocytosed proteins. In STS-135, decreases were seen in the regulatory subunit of type II protein kinase A (RII) by Western blotting, and demilune cell and parotid protein (DCPP) and α-amylase (p<0.01) by immunogold labeling, while proline-rich proteins (PRPs, p<0.001) and parotid secretory protein (PSP, p<0.05) were increased. These results suggest microgravity effects on secretion are function-dependent. Microarray analyses showed significant changes in the expression of a number of genes, including components of the cyclic-3’,5’,-adenosine monophosphate (cyclic AMP) signaling pathway. Compared to habitat ground controls, mice from both flights exhibited altered expression of cyclic AMP-specific phosphodiesterases, adenylate cyclase isoforms, and several A-kinase anchoring proteins. Bion-M1 flight mice showed increases in gene expression for lysozyme and amylase, a decrease in PRPs, and RII expression was unchanged from control values. Secretory protein expression is altered by travel in space, representing a reversible adjustment to microgravity conditions. Ultimately, the goal is to develop a test kit using saliva — an easily obtained body fluid — to assess the physiologic effects of travel in space.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3