
INTRODUCTION

The modern history of melatonin (MEL) begins in the
twentieth century with a study by McCord and Allen (1) from
1917 which showed that the pineal gland homogenate contained
a substance that lightened the skin of tadpoles. In 1958 Lerner et
al. (2), extracted MEL, N-acetyl-5-methoxytryptamine, an
indoleamine from the bovine pineal gland. In fact, Lerner
evaluated 50 g of lyophilized and powdered pineal gland from
200,000 of cattle. The earliest known report of the pineal gland
was included in Galen’s work, De usu partium, which described
the location of the pineal gland immediately after what he called
the ‘central chamber’ (now the third chamber). According to
Galen, like all other glands (Greek: Ἀδήν) of the body, the pineal
gland was supposed to be a support for the surrounding blood
vessels. He gave the name to the pineal gland because of its
shape resembling a cone. Galen also believed that the
physiological role of the pineal gland is to fill the bifurcation of
the great cerebral vein (‘Galen’s vein’), from which all choroidal
plexuses of the anterior ventricles emerge (3). For a long time,
MEL was considered as hormone occurring only in vertebrates,
however, it turned out that MEL is a compound common in

nature. It has been isolated in many different evolutionarily
distant organisms such as bacteria (4), plants like Zea mays (5),
invertebrates like Dendrocoelum lacteum or Drosophila
melanogaster (6, 7). In mammals, there are three types of the
pineal gland depending on its shape and location in relation to
chamber III. Type A, with a conical shape, located in the
epithalamus of the brain and connected to the rest of the
epithalamus through the peduncle, occurs in humans. The
intermediate type (AB) with an elongated shape occurs in, for
example, a cat, and the medio-intermediate peripheral type
(ABC), a strongly elongated and extending cerebellum, occurs in
a guinea pig (8, 9). The mass of this gland depends on the species
of mammal and is: 0.2 mg in mouse, 9 mg in dog (10), 100–200
mg in human (11, 12) and 1 g in a predatory marine mammal of
the seal family called Weddel seal (13). In 1983 the
pharmacological characteristics of the melatonin receptor in
mammals were presented (14), and then the first human
melatonin receptor was cloned (15). Noticeable progress in
research on the importance of melatonin, expressed in the
number of publications, has been observed from year to year,
and the last quarter of a century was especially decisive. In
humans MEL is produced and secreted by pineal gland as well
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as small intestine, liver, retinas, lymphocytes and melanocytes in
the skin, however only retinal MEL exhibits a circadian rhythm
like that in the pineal gland. This kind of a distribution and
prevalence of MEL suggest that it was a molecule that appeared
at an early stage of the life and that is the reason that has an
identical structure in all organisms in which it has been found. In
contrast, the functions that MEL performs, is different in distinct
species: regulation of the biological clock, protection against
free radicals, regulation of reproduction and sexual maturation in
mammals, sleep regulation, immunomodulation, and regulation
of body weight and energy metabolism, and many others. The
path the MEL has taken from its biochemical role in the
metabolism of archaic bacteria, to an endocrine function,
including the key regulatory place of diurnal behavior in humans
is a fascinating story about the history of life on Earth.

MELATONIN - BIOSYNTHESIS, METABOLISM, 
AND PHARMACOKINETICS

Endogenous small molecule MEL is synthesized in
pinealocytes and other tissues as the end product of the metabolic
pathway in which tryptophan, after being transported into the cell,
is further transformed by enzymes such as tryptophan hydroxylase

(TPH), aromatic amino acid decarboxylase (AAAD), serotonin N-
acetyltransferase (SNAT, aralkylamine N-acetyltransferase-
AANAT) and N-acetylserotonin O-methyltransferase (ASMT)
(16). The biosynthetic pathways of melatonin in animals and in
plants are presented in Fig. 1. The MEL biosynthetic pathway in
plants appears to be like that defined in animals, especially since
its first two enzymes have been identified also in plant tissues.
However, recent studies conducted on rice leaves, indicate that the
first enzymatic step in the synthesis of MEL in plants is the
decarboxylation of tryptophan (involving tryptophan
decarboxylase (TDC) rather than its hydroxylation as in the
vertebrates, and the product of this reaction is tryptamine rather
than 5-hydroxytryptophan (17, 18). It is assumed that SNAT
activity, which is under of the circadian rhythms control, plays a
key role in regulating the rate of MEL synthesis (19, 20). It has
been shown that in scotophase, the expression of the gene
encoding SNAT in pinealocytes is significantly increased, which
leads to raised concentrations of MEL in blood serum (21). This is
important because no similar relationship has been found
regarding the activity of other enzymes in the MEL biosynthetic
pathways (22). At night and during darkness, the activity of post-
ganglionic sympathetic fibers increases, which leads to the release
of norepinephrine (NA) into the pineal gland, where it binds to
pinealocyte β-AR receptors increasing intracellular cAMP, which
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Fig. 1. Melatonin (MEL) biosynthesis in
animals and plants.
AADC, aromatic-L-amino-acid decarboxylase;
AANAT, arylalkylamine N-acetyltransferase;
ASMT, N-acetylserotonin methyltransferase;
HIOMT, hydroxyindole-O-methyltransferase;
SNAT, serotonin-N-acetyltransferase; T5H,
tryptamine 5-hydroxylase; TDC, tryptophan
decarboxylase; TP5H, tryptophan 5-
hydroxylase.



is responsible for the phosphorylation of CREB protein, a
transcription factor initiating SNAT genes transcription (23, 24).
Thus, after darkening, a >100-fold increase in the level of SNAT
mRNA is observed, followed by SNAT protein expression and
enzymatic activity (20). On the other hand, increased SNAT
expression is also associated with post-translational modifications
of the protein because of activating phosphorylation (25, 26).
Some researchers question the major regulatory role of SNAT. Liu
and Borjigin (27) showed that during the night hours, the pineal
glands of the tested Sprague-Dawley and LEC rats contained
SNAT in molar excess compared to MEL, and although SNAT
expression increased steadily in the second half of the night, MEL
concentration peaked much earlier. In vertebrate animals and
humans, there is one SNAT homologue while other vertebrates
show number more. For example, in Solea senegalensis fish,
SNAT2 has been shown to be present in the pineal gland and
homologs 1a and b in other tissues such as the retina (28). Related
results were reported by Pomianowski et al. (29), who
demonstrated the presence of two transcripts of genes encoding
AANAT and two encoding ASMT in the eyeball at noon and
midnight in sticklebacks. Day-night changes in MEL
concentration did not correlate with changes in either gene
expression or AANAT activity. At midday, high NAS synthesis
and low concentrations were recorded in the eyeball of fish, and
this suggests that NAS performs additional tasks beyond its
function as a precursor of MEL biosynthesis. So, what
mechanisms have resulted in the isolation of homologs in some
species? Studies using gene sequencing have shown a common
origin of SNAT homologs in vertebrate animals, and that the
demonstrated differences are the result of mutations during
evolution. It is thought that homologs such as 1a and b arose from
genome duplication. Falcona et al. (30) showed that AANAT
homologs (VT-AANAT, NV-AANAT) were already present in the
evolutionary ancestors of Agnatha and Gnathostomata. Thus,
different evolutionary pathways converged and hence the
differences in SNAT (AANAT) expression and MEL
concentrations. For example, some homologs may respond to
photoperiodic changes, while others may be upregulated by
oxidative stress and/or take part in detoxications of amines. This
last function is extremely important because it prevents from
binding arylalkilooamin to retinoaldehyd in photodetectors
resulting in their inactivation. Additionally, cycle-related genes
emerged during vertebrate evolution because of duplication of
ancestral genes that were not related to vision (31). Moreover,
other homologs of SNAT are involved in the detoxification
processes. Samanta et al. (32) evaluated the effects of exogenous
MEL on the regulation of endogenous plant growth regulators and
their combined effects on metal-binding ligands in two indica rice
cultivars: Khitish (arsenic-sensitive) and Muktashri (arsenic-
tolerant) under arsenic stress conditions. MEL reduced the adverse
effects of arsenic by stimulating endogenous biosynthesis of MEL
and gibberellic acid in a mechanism to regulate the expression of
key biosynthesis genes such as GA3ox, TDC, SNAT and ASMT.
They also showed an increase in endogenous abscisic acid, which
was in turn regulated by MEL in the mechanism of induction of
the expression of the key anabolic gene NCED3 with
simultaneous suppression of ABA8ox1 (32). The researchers also
showed that MEL increased the accumulation of polyamines such
as spermidine and spermine, thereby modulating arsenic-induced
toxic stress conditions. Thus, MEL enhances tolerance to arsenic
by inhibiting bioaccumulation of this element, by modulating the
expression of selected arsenic transporters and controlling the
homeostasis of endogenous phytohormones.

The metabolism of MEL, which takes place in the liver and
partly in the kidneys, is extraordinarily complex and not fully
understood. It has been shown that MEL can undergo enzymatic
(33) and pseudo-enzymatic degradation, in which mitochondrial

cytochrome C functions as an enzyme (34, 35) or can be eliminated
by interaction with reactive oxygen species (ROS) or and others
like reactive nitrogen species (RNS) or reactive chlorine species
(RCS) (36, 37). MEL degradation products during detoxification of
reactive species include such metabolites as cyclic 3-
hydroxymelatonin (38) and N1-acetyl-N2-formyl-5-
methoxycinnamate (AFMK) (33) characterized by their ability to
further scavenge free radicals, which differs MEL from other
‘scavengers’. After conjugation with sulfuric or glucuronic acid
these metabolites are excreted in the urine. In the blood, MEL binds
to albumin and in the liver, it is metabolized to 6-hydroxymelatonin
by cytochrome P450 isoforms (mainly CYP1A2) and conjugated
to 6-sulfatoxymelatonin, which is then excreted in the urine, and its
concentration reflects the plasma concentration and can be used to
assess pineal function. In the CNS, MEL is degraded to N-acetyl-
N2-formyl-5-methoxycinnamate (AFMK), which is deformed to
N-acetyl-5-methoxycinnamate (AMK) (34, 39).

MELATONIN - MECHANISMS OF ACTION 
AND PHYSIOLOGICAL EFFECTS

Most processes in living organisms are subject to cyclic
variability in the form of self-sustaining oscillating
physiological processes whose duration ranges from
milliseconds to annual fluctuations. These reactions are called
biological rhythms, and many of them have been with us since
the dawn of life on earth undergoing evolutionary changes and
participating not in passive assimilation but, above all, leading to
the ability to modify our own vital functions in response to the
external environment. The light-dark cycle is considered by
most researchers to be the most essential, fundamental
synchronizer of human endogenous rhythms (41). In mammals,
the clock is a system of peripheral oscillators located in various
organs and an overarching, so-called central clock, located in the
suprachiasmatic nuclei (SCN) of the brain. It is a cluster of only
50.000 neurons in humans, which reach a size of only a few
tenths of a cubic millimeter (42, 43). The SCN itself is subject to
synchronization to the diurnal rhythm by light, which is why the
rhythm generated by the central clock is a day/night rhythm
receiving signals mainly from retinal cells containing
melanopsin and directly responding to light (44). The
neurotransmitter in this pathway is the glutamic acid. Biological
rhythms are extremely conservative acting in analogous ways in
evolutionarily distant organisms e.g., humans and Drosophila
melanogaster. The molecular mechanism of the clock is a
feedback loop, mostly negative, in which the final protein
product inhibits the expression of the gene encoding it. The
primary mammalian clock genes belong to the Period - Per1,
Per2, Per3, Cryptochrome - Cry1, Cry2 and Clock and Bmal1
families. A hallmark of central oscillator genes is expression at
specific times of the day (45). For the discoveries of the clock in
Drosophila, the 2017 Nobel Prize in Physiology or Medicine
was awarded (46). In humans, MEL secretion is synchronized
with the light/dark cycle carrying the primary information about
the length of a given time of day (52). MEL biosynthesis
increases rapidly during the dark period and its concentration
peaks between 12–2 o’clock to then gradually decrease in the
second half of the night. Blood concentrations of MEL range
from 0–20 pg/ml during the day to 20–120 pg/ml at night (47,
48). Maximum concentrations are organism-specific and age-
dependent. After 25 years of age according to some researchers,
and after 40 according to others, MEL production in the pineal
gland drops to 60% of young adult levels. From that point on,
there is a steady decline to values as low as 20% of the young
adult level in people over 90 years old, with average MEL values
always higher in women (49-51).
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In mammals, MEL exhibits four primary mechanisms of
action in mammals:
1) interaction with MEL membrane receptors;
2) antioxidant action which is the resultant of MEL’s ability to
transfer free electrons and to stimulate redox reaction enzymes;
3) binding of intracellular proteins such as calmodulin, which
affects cell cycle progression;
4) binding and activation of nuclear receptors belonging to the
ROR/RZR subfamily (retinoid orphan receptors/retinoid Z
receptors).

According to the IUPHAR nomenclature, the following
types of MEL membrane receptors are distinguished:
1) ML1 - such as MT1 (Mel1a), MT2 (Mel1b) and Mel1c bound
to G proteins. Their characteristic feature is their high affinity for
MEL which determines their ability to bind the hormone at
picomolar concentrations (52).
2) ML2 (MT3) - bound to quinone reductase and binds MEL at
nanomolar concentrations of the hormone (52, 53).

MEL has demonstrated the ability to electron transfer and
inactivate free radicals such as singlet oxygen, nitric oxide,
hydroxyl radical hydroxide as well as a stimulating effect on
antioxidant enzymes such as superoxide dismutase, catalase, and
glutathione peroxidase. It has been shown that MEL’s ability to
inhibits lipid peroxidation in vivo is much more effective than
other ‘scavengers’ like vitamin C or vitamin E (54-56).

Calcium-activated calmodulin participates in the initiation of
the S and M phases of the cell cycle, in the expression of cell
cycle-related genes, and in the return of cells from the resting G0

phase to G1 of the cell cycle. MEL binds to calmodulin,
impeding the activation of the protein in question, its
distribution, and the normal course of the cell cycle. It is thought
that this mechanism may explain the antiproliferative effect of
melatonin on dividing cells, including cancer cells (57-59).

MEL exhibits the ability to bind and activate nuclear
receptors belonging to the ROR/RZR (retinoid orphan
receptors/retinoid Z receptors) subfamily. Expression of diverse
types of these receptors is demonstrated in various organs. Thus,
RZRb were found in nerve cells bound to, for example, the
limbic system, while RORa/RZRa are present in the pituitary
gland and the liver, cartilage, or skin. The RZRg have primarily
been localized to skeletal muscle (60, 61). These receptors
participate in regulating immune processes, e.g., maturation of T
lymphocytes, and engage in the differentiation of the central
nervous system. An example of the immunomodulatory effects
of MEL resulting from RZRa stimulation is the inhibition of
mRNA expression of 5-lipoxygenase, which participates in
leukotriene biosynthesis in the arachidonic acid cascade (62).

MELATONIN - POTENTIAL MECHANISMS TARGETING
LIVER AND BILIARY TRACT DISEASES

The potential mechanisms of action of melatonin in humans
are shown in Fig. 2.

Alcoholism is a major health problem across the world and
alcohol liver disease (ALD) remains the main cause of liver
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Fig. 2. Potential mechanisms of action of melatonin (MEL) in the liver.
102, singlet oxygen; COX-2, cyclooxygenase 2; GPD, glucose-6-phosphate dehydrogenase; GSH, glutathione peroxidase; H202,
hydrogen peroxide; HMBG1, high mobility group box 1; IL, interleukin; M1, M2, melatonin receptors; MDA, malondialdehyde; NF-
κB, nuclear factor kappaB; NO, nitric oxide; NOS, nitric oxide synthase; O–, superoxide; OH–, hydroxyl group; ONOO−, peroxynitrite;
SOD, superoxide dismutase; SREBP, sterol regulatory element-binding protein; TNF-α, tumor necrosis factor alpha; VEGF, vascular
endothelial growth factor.



related mortality worldwide, the highest (41%) in the European
region. The prevalence of ALD is approximately 2% in the US
general population with an estimated mortality of 5.5 per 100,000
in 2010. In Europe, South-East Asia region including India and
China percentage of drinkers continues to rise whereas in Africa it
has decreased. The ALD encompasses a spectrum of disorders
ranging from the simple fatty liver (hepatic steatosis) progressing
at time with continued excessive alcohol ingestion to alcoholic
steatohepatitis (histological evidence of hepatic inflammation or
fibrosis), alcoholic cirrhosis and hepatocellular carcinoma.
Among patients with simple fatty liver, approximately 35%
progress to steatohepatitis and 10% develop cirrhosis. Multiple
factors play a role in the pathogenesis of ALD, not all of which
have been elucidated. Molecular mechanisms of ALD include
direct hepatotoxicity, induction of ROS production by alcohol and
its metabolites, activation of innate immunity and the production
of proinflammatory cytokines. Most of the ethanol in the body is
metabolized in the liver to acetaldehyde by the action of alcohol
dehydrogenase, which, with the participation of aldehyde
dehydrogenase, is converted to acetate, leading to increased
production of NADH. However, in persons who consumed
substantial amounts of alcohol the enzymes cytochrome P450 2E
1 and catalase have also a significant role in alcohol conversion to
acetaldehyde and mediate liver impairment (63). Acetaldehyde is
the first metabolite during ethanol detoxification, which can
increase collagen I transcription directly and indirectly through
transforming growth factor-β1 (TGF-β1). Excess NADH leads to
the synthesis of glycerol phosphate and triglycerides deposited in
the liver. Chronic alcohol consumption results in ROS formation,
bacterial proliferation in the intestinal lumen, alteration of its
permeability to macromolecules, bacterial translocation, and Toll-
like receptor-dependent activation of Kupffer cells, which drives
immune response and cytokine production, resulting in liver
necrosis and fibrosis (64, 65). Studies in laboratory animals
confirm the etiological role of cytokines in liver damage in ALD,
with elevated levels of tumor necrosis factor alpha (TNF-α) and
TNF-α-induced cytokines/chemokines such as interleukins (IL) -
6, 8 or 18, and that the levels of these cytokines correlate with
markers of the acute phase response, liver function and the clinical
picture of the disease (66). Another factor involved in the
processes is nuclear hepatocyte factor-4, which acts as a major
transcription factor for the regulation of certain genes involved in
lipid metabolism and the oxidative process (67). A key molecule
in the cascade of reactions leading to the abnormalities described
above appears to be LPS derived from the gut microbiota (68, 69).
Many studies in laboratory animals indicate that endotoxemia is a
major risk factor for the development of ALD. Rats with ALD
were characterized by high concentrations of endotoxins in the
portal vein and a correlation between these concentrations and the
severity of ALD (70). Similar observations were made by
Bigatello et al. (71), showing that endotoxemia was present in 36
of 39 (92.3%) ALD patients at the time of cirrhosis. Circadian
cycle genes have been shown to regulate the expression of genes
encoding proteins of the apical complex in the intestine affecting
its permeability and to regulate the expression of, for example,
transporters for glucose. Balakrishnan et al. showed that the
concentration of both SGLT1 and GLUT2 mRNA and/or protein
in the intestine of rats and mice is dependent on diurnal rhythms
(72). Equivalent results have been reported by other researchers
(73, 74). Master clock and peripheral oscillator genes have also
been shown to regulate lipid metabolism (75, 76), intestinal
permeability (77) and other intestinal functions. Voigt et al. (78)
found that disruption of diurnal rhythms (light/dark phase shift)
disrupts the gut microbiota causing dysbiosis in mice. Thus,
alcohol affecting the central clock can create favorable conditions
for its toxic effects and the development of liver disease. This has
been confirmed by studies in laboratory animals. Laboratory

animals with ALD have high concentrations of alcohol and
endotoxins in the portal vein, and this correlates with the degree of
liver damage. Dysbiosis in alcohol-fed laboratory animals has
been demonstrated previously. Mutlu et al. (79) found that male
Sprague-Dawley rats developed dysbiosis and ALD at week ten of
the alcohol rich diet, and that these phenomena were reversed by
administration of a probiotic containing Lactobacillus rhamnosus
Gorbach-Goldin. In 2011, Swanson et al. (80) published the
results of a study in which they showed that alcohol, at a low
concentration of 0.2%, induced a time-dependent increase in the
permeability of a Caco-2 cell culture monolayer used as a research
model of intestinal epithelial cells. This part of the experiment also
showed an increase in the expression of CLOCK and PER2
proteins correlating with an increase in intestinal barrier
permeability (80). Silencing of the Clock or Per2 genes with the
siRNA technique led to a reversal of this phenomenon. The second
part of the study analyzed intestinal barrier permeability in male
Sprague-Dawley rats subjected to an alcohol-rich diet. Again,
there was an increase in intestinal barrier permeability, as well as
Per2 gene and PER2 protein expression, which were shown to be
increased in duodenal and intestinal tissues (80). Currently, we
have a small number of studies on the effects of MEL on alcohol-
induced liver damage. Hu et al. (81) showed that MEL reduced
aminotransferase activity, the degree of steatosis and inhibited
inflammatory cell migration without affecting lipogenesis genes
expression in hepatocytes in ethanol-fed mice. These authors also
showed that MEL treatment led to a reduction in serum and tissue
levels of pro-inflammatory cytokines, lipid peroxidation and
neutrophil infiltration in tissues (81). MEL also inhibited
apoptosis. Isolating Kupffer cells from ethanol-only-fed animals
showed a prominent increase in the production of ROS and TNF-
α, while Kupffer cells of MEL-treated mice had significantly less
of them. Mishra et al. (82) showed that in ethanol-induced acute
liver injury, MEL exhibited potent hepatoprotective effects by
inhibiting oxidative stress accompanied by a decrease of alanine
transaminase (ALT) activity in serum. The researchers showed
that ethanol in a dose-dependent manner led to a significant
increase in matrix metalloproteinase-9 (MMP-9) expression,
which was significantly correlated with the expression of pro-
inflammatory cytokines, such as TNF-α and ILS such as IL-1β
and IL-6. In turn, the application of MEL had a hepatoprotective
effect by downregulating the expression of MMP-9 and
upregulating the expression of the tissue inhibitor of
metalloproteases, TIMP-1 (82). It was shown that in the
experimental animals, ethanol induced the translocation of the
NF-κB playing a vital role in inducing the expression of
inflammatory genes responsible for oxidative stress, and that the
ethanol increased the degradation of the NF-κB inhibitor - IκBα.
As the authors showed, MEL inhibited the process of nuclear
translocation of NF-κB (82). Here it is worth noting that a similar
mechanism of action is attributed to ginsenosides, natural steroids
derived from Panax plants (especially Panax ginseng), widely
used in traditional Chinese medicine (83, 84).

OTHER TOXIC LIVER DAMAGE

Acetaminophen (APAP) is an OTC drug often used for the
symptomatic treatment of pain and fever. It has a particularly good
safety profile; however, acute intoxication can result in liver
damage (85), which is characterized by extensive oxidative stress
(86). Matsura et al. (87) studied the preventive use of MEL (50 or
100 mg/kg) in mice in which toxic liver damage was induced by
oral administration of APAP at a dose of 750 mg/kg. As shown,
administration of MEL to mice 8 or 4 hours before toxicity
inhibited the increase in aminotransferase activity in a dose- and
time-dependent manner. In addition, MEL at a dose of 100 mg/kg
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given 4 hours before APAP administration, significantly inhibited
hepatic necrosis, reduced the intensity of inflammatory
infiltration, and inhibited lipid peroxidation and myeloperoxidase
activity in hepatocytes (87). MEL pretreatment inhibited also
release of NOS and IL-6. However, MEL did not affect the content
of reduced glutathione (GSH) in the liver, nor did it reduce GSH
consumption as well as the expression of heat shock proteins
HSP70 (87). Other studies showed also inhibitory effect of MEL
on APAP-induced serine/threonine kinase and nuclear
translocation of mitochondrial Bax and apoptosis-inducing factor
(AIF), which prevented cell death (88). Interestingly, although
APAP-induced liver damage was primarily due to its
biotransformation to toxic metabolites by CYP4502E1, MEL had
no effect on its expression. In another study, Kanno et al. (89)
demonstrated a dose-dependent protective effect of MLT against
hepatotoxicity induced by APAP. In vitro, at concentrations of 0.1,
1, 10 or 100 mM, MEL inhibited ROS production as well as lipid
peroxidation. Similar in vivo, after subcutaneous administration at
a dose of 10 mg/kg, MEL significantly reduced mortality and
hepatotoxicity in experimental animals (89). In contrast to other
reports, there was no synergistic effect of MEL on the antipyretic
and analgesic effect of APAP (90). A different approach to the
problem was presented by Karakus et al. (91), who evaluated the
efficacy of agomelatine, a MEL receptor agonist, in the prevention
of APAP-induced hepatotoxicity in rats. Agomelatine is a new
antidepressant drug whose mechanism of action involves
resynchronization of circadian rhythms and improvement of sleep
architectonics. The authors found that administration of
agomelatine in the test animals significantly corrected aspartate
aminotransferase (AST) and ALT activity, TNF-α, IL-6 and 8-iso-
prostane levels, and increased superoxide dismutase activity as
well as glutathione concentration (91).

IMMUNOMODULATING AND 
IMMUNOSUPPRESSIVE DRUGS

Calcineurin inhibitors (CIn)

Cyclosporin A (CsA) and tacrolimus (TkL) hare used to treat
autoimmune diseases and organ transplant patients. The action of
the CIn is fraught with significant side effects such
nephrotoxicity, cardiotoxicity and hepatotoxicity, caused by
oxidative stress leading to a number of changes in the liver (92,
93).These changes include vacuolization of the hepatocytes
cytoplasm, the appearance of numerous mitotic figures,
intracellular changes in the concentration of GSH, MDA,
expression of heat shock proteins (HSP) and apoptosis (92) and
to increasing levels of TNF-α, IL-6 and/or NOS (93). Rezzani et
al. (92) showed that MEL protected against cyclosporine-induced
oxidative stress. Similar observations were made by Kurus et al.
(94), who induced toxic liver damage in Sprague-Dawley rats
using CsA at a dose of 10 mg/kg/28 days. They revealed that the
group of animals treated with CsA and MEL together showed no
significant histological changes compared to the control group. In
turn, Akbulut et al. (95) found that the application of MEL in
laboratory animals with liver damage after CsA, reduced the
activity of histological lesions and increased hepatocellular
glutathione, MDA, and increased the activity of superoxide
dismutase and catalase.

NON-ALCOHOLIC CHRONIC LIVER INJURY

Nonalcoholic fatty liver disease (NAFLD) is regarded as the
hepatic manifestation of metabolic syndrome, affecting at least a
quarter of the global adult population and has become one of the

most common reasons for liver transplantation, especially in
Western countries. NAFLD encompasses a disease spectrum
ranging from simple steatosis to steatohepatitis (defined
histologically as hepatocyte injury due to inflammation and
hepatocellular ballooning), liver cirrhosis and hepatocellular
carcinoma. The most feared complication of nonalcoholic
steatohepatitis (NASH) is the development of fibrosis, liver
cirrhosis and hepatocellular carcinoma, respectively in 25–33%,
5–15% and 2–5% of people with NAFLD (96). Recently, the
expert opinions issued by professional organizations have been
proposed that the nomenclature of NAFLD should be updated to
metabolic dysfunction-associated fatty liver disease (MAFLD).
While the definition of NAFLD requires that there be evidence
of fatty liver with no causes for secondary hepatic fat
accumulation such as significant alcohol intake, chronic viral
hepatitis, or use of steatogenic medication, MAFLD is
diagnosed by detecting fatty liver together with metabolic risk
factors without exclusion of other liver diseases (97, 98). No
standard pharmacological treatment currently exists, however
certain treatments including insulin sensitizing agents, lipid-
lowering agents, antidiabetic agents, antioxidants and other
classes of drugs have been studied in clinical trials. Lifestyle
interventions and weight loss is indicated for all patients with
NAFLD/MAFLD (99).

LIVER STEATOSIS

The first step on the path to liver damage is the accumulation
of lipids in hepatocytes leading to steatosis and then, under the
influence of factors that have not been fully clarified, to
inflammation, fibrosis and eventually cirrhosis. The possible
association of MEL with hepatic steatosis is based on historical
observations that showed that pinealectomy increased serum
glucose levels in laboratory animals, while administration of MEL
corrected these abnormalities (100, 101). Moreover, glucose
intolerance and decreased insulin sensitivity of adipocytes were
observed after pinealectomy (102). Observations regarding the
effect of MEL on these processes are unfortunately diverse and
often contradictory. Thus, it was reported that adipocytes
developed insulin resistance after pinealectomy, and that MEL
administration led to hyperglycemia in laboratory rats. In birds,
rabbits, on the other hand, showed both an increase, decrease and
no effect of MEL on glycemia (103-105). Finally, Bojkova et al.
(106) showed that 48 h fasting after prolonged MEL
administration significantly altered changes in carbohydrate and
lipid metabolism in young rats, and Markova et al. (107) revealed
that MEL administration significantly decreased serum
triacylglycerols and liver glycogen content in male rats, and
increased liver phospholipid content in female rats. Since then, the
number of experimental evidence has been increasing, and they
point to a potential preventive role of MEL in the process of fat
deposition in hepatocytes. In the end of 20th century, it was shown
that MEL increased the concentration of total, free and esterified
cholesterol and decreased the concentration of non-esterified fatty
acids in the blood of rats. In turn, long-term use of MEL led to
correction of hypercholesterolemia and hepatic steatosis on
histological evaluation in animals fed a cholesterol-rich diet. MEL
decreased leptin concentrations, which corrected the BMI of
laboratory animals indirectly affecting the degree of hepatic
steatosis (103, 107). By affecting the regulation of leptin
concentrations, MEL also interferes with energy metabolism,
reducing the body weight of laboratory animals (108, 109). In
laboratory animals, a high-fat diet has been shown to induce
oxidative stress leading to hepatic steatosis and steatohepatitis,
and MEL inhibits these processes. Hoyos et al. (110) showed that
the use of MEL in rats fed with a regular diet had no effect on
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cholesterol and triglyceride concentrations, while in animals fed
with a cholesterol-rich diet, MEL led to a significantly smaller
increase in total cholesterol and low-density lipoprotein (LDL)
concentrations compared to the fat-rich-fed control group (110). In
the group of studied animals, MEL prevented a decrease in high-
density lipoprotein (HDL) concentrations. In contrast, the authors
showed no differences in very-low-density lipoprotein (VLDL)
and triglyceride concentrations. In addition, they also showed that
MEL slightly decreased urea and bilirubin concentrations, while it
increased serum glucose concentrations (110).

An important observation made in this study was the
demonstration of a protective effect of MEL on cell membrane
damage (110). Comparable results were obtained in a study by
Hatzis et al. (111), which showed that compared to the untreated
group, rats treated with MEL at doses of 5 and 10 mg/kg had
significantly lower mean liver weights and a significantly lower
(p<0.001) ratio of liver weight to total body weight. Liver
steatosis was also shown to be lower in the treated rat groups
(111). Thus, III0 steatosis was shown in 3.4% of animals using
10 mg MEL and in 11.1% 5 mg. Recently, the valuable studies
have been published indicating the potential preventive effect of
MEL in hepatic steatosis and the involvement of new
mechanisms in this process. Wang et al. (112) evaluated the
effects of MEL at a dose of 10 mg/kg/24h on fat metabolism and
fat deposition in the liver and abdominal girdle in 20 Sprague-
Dawley rats. After 60 days of feeding the rats with a high-fat
diet, it was shown that liver weight and liver index (the ratio of
liver weight to body weight) in the MEL group of animals
decreased by 20.69% and 9.63%, respectively, similarly,
abdominal fat weight decreased by 59.88% and 54.93%,
respectively, and epididymal fat weight was lower by 45.34%
(p=0.049) (112). Triglyceride, high-density lipoprotein, low-
density lipoprotein, and total cholesterol concentrations were
significantly lower in MEL-treated animals compared to
controls. Genetic studies (Gene chip + qPCR) showed that MEL
positively affected the expression of 289 genes and negatively
affected the expression of 293, and that the mRNA expression of
lipolysis-related genes increased, while the mRNA expression of
lipogenesis-related enzymes decreased significantly (p<0.05)
(112). In another study, Schneider et al. (113) evaluated the
effects of MEL on the liver of zebrafish after feeding the test
fishes with fructose for 8 weeks. In addition, the expression of
genes related to appetite control (leptin, ghrelin and
melanocortin 4 receptor - MC4R) was evaluated. As shown, the
group of animals fed only with fructose developed hepatic
steatosis, which did not occur in control animals and those
additionally using MEL (113). Fructose-fed animals also had an
increase in intestinal leptin expression compared to the MEL
group. When considering the mechanisms by which MEL may
exert the effects described above in humans, such as effects on
gene expression, the following factors are considered: a)
inhibition by various mechanisms of the electron transport chain,
thereby reducing lipid peroxidation, b) effects on the regulation
of sterol regulatory element binding protein (SREBP), which is
activated by LPS and affects the expression of SREBP target
genes (114, 115).

It has been known since years that insulin resistance is at the
center of the pathogenetic events leading to hepatic steatosis. So,
are there any scientific evidence about the impact of MEL on this
phenomenon in humans? It seems that a research model of this
problem could be type 2 diabetes (T2D) in the course of which
steatosis and/or steatohepatitis are common. It is now known
that membrane MEL receptors are present in cells of various
organs including the gastrointestinal tract (116) with MT2
predominating (117). The presence of MT1 and MT2 receptors
has also been confirmed in human pancreatic tissue and
Langerhans’ islets (118). The beneficial effects of MEL in T2D

have been confirmed by studies in humans and/or in cell cultures
of tissues obtained from humans. Thus, the use of MEL has been
shown to increase glucose-stimulated insulin secretion in cell
cultures obtained from people without diabetes (119), and that
MEL in the same research model leads to both glucagon and
insulin release (120). It has also been shown that the appearance
of certain variants of the MEL receptor gene MTNR1B leading
to inhibition of signaling is associated with an increased risk of
T2D (121-124) although this issue has been a subject of
controversy (125, 126). It is worth noting that views on the use
of MEL in T2D are varied and some investigators raise harmful
effects (127-129) therefore, the use of MEL in MAFLD and T2D
patients must be subject to special supervision. We do not have
well-documented studies on the prevention of simple hepatic
steatosis in humans. All studies have been performed in
steatohepatitis patients and will be discussed in the subsection
dealing with this problem.

STEATOHEPATITIS

As mentioned earlier, the axis of disorders in MAFLD is
insulin resistance manifested by hyperglycemia,
hyperinsulinemia, increased gluconeogenesis, and de novo fatty
acid synthesis, which leads to organ steatosis (130). In parallel,
there is activation of lipolysis in adipose tissue and increased
influx of fatty acids into the liver, increased production of
adipokines and pro-inflammatory cytokines (131). All these
processes lead to damage of the cell membrane system including
mitochondria and the endoplasmic reticulum and increase in
oxidative stress which expresses increased synthesis of ROS and
other free radicals. The extent of the described disorders depends
on aa number of factors including: a) the rate of fatty acid
absorption, b) fatty acid biosynthesis in the liver, and c) the
interaction of other factors such as the gut microbiome and/or
genetic predisposition. The rate of fatty acid uptake by
hepatocytes, depends on the amount and activity of fatty acid
transport proteins (FATP, fatty acid transport protein; FAT, fatty
acid translocase; CD36; FABP, fatty acid binding protein), the
expression of which can be regulated in the short and long term.
The first mechanism is mediated by intracellular insulin
concentration, while the second is mediated by activation of
peroxisome proliferator-activated receptor (PPAR) family
transcription factors. The lipid metabolism in the liver involves
biochemical pathways responsible for the body’s energy
balance, the most important of which are glycolysis, fatty acid
biosynthesis, fatty acid desaturation and triglyceride synthesis.
The key enzyme of fatty acid biosynthesis is fatty acid synthase
(FAS), whose activity limits the rate of reaction. FAS expression
is regulated by a group of transcription factors such as SREBP,
liver X receptors (LXR) and carbohydrate response element
binding protein (ChREBP) (132, 133).

The mechanisms by which MEL exhibits protective effects
on hepatocytes in NASH and CIRR are not fully understood.
Most studies indicate that the primary action of MEL is the direct
scavenging of free radicals; as well as indirect by the stimulating
of antioxidant enzymes and exhibit anti-inflammatory effects by
inhibiting the synthesis of prostaglandins (134), adhesion
molecules (135), leukocyte migration (136) and cyclooxygenase-
2 (COX-2) expression (137, 138). The effect of MEL on the
immune system and the profile of cytokines produced is the
subject of intense research. MEL can directly affect the activity of
immune cells, on the other hand, these cells produce MEL, and
this situation is analogous to the functional immune synapse
formed by immune-competent cells with the CNS. As shown, the
effect of MEL on immune cells is mainly stimulatory but there
are also opposing research available. This pro-inflammatory
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effect is associated with increased production of pro-
inflammatory cytokines such as IL-1, IL-2, IL-6, IL-12, TNF-α
and interferon gamma (IFN-γ) in various cell types such as
monocytes and T-helper type 1 (Th1) cells and IL-17 in T-helper
type 17 (Th17) cells (139, 140). MEL has also been shown to
cause increased production of cytokines involved in clonal
differentiation and expansion. Thus, under the influence of MEL,
increased concentrations of macrophage colony-stimulating
factor (M-CSF) (141, 142), stems cell factor (SCF) (143, 144),
transforming growth factor beta (TGF-β) (145, 146) and Tα and
thymulin in thymocytes (147, 148).

The effect of MEL in autoimmune diseases is
multidirectional. MEL may lead to improvement in others to
worsening and the mechanisms responsible for this variation are
unknown. MEL has found application in multiple sclerosis
(149), rheumatoid arthritis (RA) (150, 151) in which
improvement after its use has been described. The evaluation of
the effect of MEL on the immune response in RA has its origins
in the study by Chen and Wei (152), who showed that beneficial
anti-inflammatory effect of MEL in a rat model of adjuvant-
induced arthritis was related to reduced thymocyte proliferation
and IL-2 secretion. In the other hand we have described a case of
a patient suffering from ulcerative colitis accompanied by
primary sclerosing cholangitis (PSC) with features of
autoimmune hepatitis (AIH), who developed severe hepatitis
manifested by multiple increases in aminotransferases activity
after repeated MEL treatment (153). The histological picture of
the liver was similar to that found in the original biopsy
performed 2 years earlier resembled and included ballooning
degeneration of hepatocytes, a mild inflammatory infiltrate in
the portal zones composed mainly of lymphocytes with focal
interface hepatitis and mild portal fibrosis (153). In addition, the
presence of lymphocytes surrounding bile ducts was also noticed
(153). The extended oxidative stress, activation of the immune
response and apoptosis lead to increased inflammation and liver
fibrosis. What is the current state of knowledge regarding the
effects of MEL on these processes? One of the earliest reports on
this problem came in 1999 from Ohta et al. (154), who assessed
the efficacy of MEL at a dose of 50 or 100 mg/kg in rats by
analyzing hepatic lipid peroxide levels and the decrease in
reduced glutathione in the liver. The research model for liver
fibrosis is carbon tetrachloride (CCl4)-induced fibrosis (155).
Noyan et al. (156) compared the efficacy of pentoxifylline
(PTX) at a dose of 50 mg/kg/24 h and MEL at a dose of 10
mg/kg/24 h showing a reduction in MDA and LOOH levels in
treated mice (p<0.01). Both MEL, PTX and MEL+PTX
increased glutathione peroxidase (GSH-Px) and catalase (CAT)
activities (p<0.05) (156). In the latter regard, MEL had greater
efficacy than PTX and MEL+PTX (p<0.05). The use of MEL,
PTH and MEL+PTH significantly (p<0.01) reduced apoptosis
and bridging necrosis while only MEL had no effect on
ballooning degeneration (156). In another study (157), the liver
of rats was histologically evaluated after one month of
preventive MEL treatment, showing essentially abolition of
changes such as necrosis, fibrosis, mononuclear cell infiltration,
hemorrhage, fatty degeneration and formation of regenerative
nodules, apoptotic figures, and fine-droplet steatosis. Only mild
ballooning degeneration of hepatocytes was observed in MEL-
treated animals (157).

Similar observations have been made by other researchers
(158-161). A remarkably interesting observation was made by
Rafiq et al. (162) who published in 2022 the results of a study
comparing the efficacy of MEL and mesenchymal stem cells
(MSCs) obtained from the bone marrow of female BALB/c mice
in preventing liver fibrosis after CCl4 induction. It was shown
that MSCs+MLT combination therapy had a significant
beneficial effect on fibrosis and the parameters studied - a

significant reduction in bilirubin concentration and ALT activity.
The PCR method showed a decrease in Bax expression and an
increase in Bcl-xl and albumin. Another mechanism for the
preventive effect of MEL on liver fibrosis is related to its
potential effects on cytokine production. In addition to assessing
oxidative stress, Wang et al. (158) showed that MEL inhibited
the expression of NF-κB in liver tissue and reduced the
production of TNF-α and IL-1β. In another study, Crespo et al.
(163) showed that MEL at a dose of 5 or 10 mg/kg/d
administered intraperitoneally reduced aminotransferase
activity, abrogated hepatic stellate cell activation, and
significantly inhibited the expression of collagens I and III,
TGF-β, platelet-derived growth factor (PDGF), connective
tissue growth factor (CTGF), amphiregulin and Smad3 proteins,
which are critical intracellular mediators of TGF-β. Choi et al.
(164) evaluated the effects of MEL on protective necroptosis-
associated mechanisms and damage-associated molecular
patterns (DAMPs), which in fibrosis are mediated by activation
of receptors associated with pattern recognition. In rats orally
administered MEL at 2.5, 5 and 10 mg/kg/d, there was a
reduction in hepatic hydroxyproline levels and hepatocyte
damage, as well as TGF-β1 and α-smooth muscle actin
expression (164). MEL also inhibited RIP1 receptor-interacting
protein expression, RIP1/RIP3 necrosome complex formation,
decreased serum concentrations of high-mobility group box 1
(HMGB1) and IL-1α, and inhibited HMGB1 interaction with
receptors for advanced glycation end products (RAGE), Toll-
like receptor 4 expression (TLR4), p38 phosphorylation and
nuclear translocation of NF-κB factor (164).

Currently, only a few studies on the effects of MEL on
steatohepatitis are available (165-172) involving humans and
none regarding cirrhosis, not counting reports of MEL in cirrhotic
patients used for sleep disturbances, circadian rhythms, and
hepatic encephalopathy (173-178). Gonciarz et al. (165)
published a study evaluating the use of MEL in NASH. At the
time, it was the first such observation involving humans (165).
Forty-two patients were enrolled in the study, whose diagnosis of
NASH was based on, among other things, histologic findings
obtained up to 6 months before starting MEL therapy at a dose of
2×5 mg. There was a significant reduction in baseline serum ALT
activity in the MEL treatment group at week 4, 8 (p<0.05),
reaching a nadir of activity at week 12 (p<0.001). Thirteen
percent of patients showed normalization of ALT activity at week
12 (none in the control group) (165). Similarly, AST activity
significantly decreases at week 4, 8 and 12 (p<0.001). In MEL-
treated group also median gamma-glutamyltransferase (GGT)
(IU/L) significantly decreased at week 4, 8 and 12 and among
twenty-six patients with elevated GGT levels at baseline 13
(50%) showed GGT normalization: six cases at week four, five
cases at week 8 and two cases at week 12 (165). Another
observation involved the same group of patients in whom MEL
was extended to 6 months (166). Significant difference in median
ALT, AST and GGT activity between baseline and week 12 in
both control and MEL treated group reported previously was also
seen at week 18, 24 and at follow-up (p<0.05). In this study
authors revealed that significant improvement in plasma ALT,
AST and GGT activity were sustained throughout the next 12
weeks in which the patients were receiving treatment (166).
Although AST level returned to the baseline value after
discontinuation of MEL, the associated GGT decrease was not
reversed (166). A major limitation of this studies was the lack of
post-therapy histological follow-up. Continuing the study, the
authors evaluated the effect of MEL, administered at a dose of 10
mg/day for 28 days to sixteen patients with histologically
confirmed NASH on insulin resistance (HOMA-IR), plasma
levels of adiponectin, leptin, ghrelin and resistin (167). In
addition, aminotransferase activity, GGT and plasma MEL levels
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were assessed. Median baseline values of HOMA-IR, leptin
(ng/mL) and resistin (pg/mL) in patients with NASH were
significantly higher compared to controls, while adiponectin
(µg/mL) was significantly lower (167). There was no significant
difference in ghrelin levels. After MEL treatment, median
HOMA-IR values decreased by 60% compared with baseline
values, while plasma concentrations of adiponectin, leptin and
ghrelin increased significantly; the difference between pre- and
post-treatment status in plasma resistin levels was not significant
(167). Cichoz-Lach et al. (168) compared the efficacy of MEL,
tryptophan and Essentiale Forte (EsF) in forty-five patients with
histologically confirmed NASH, showing statistically significant
reductions in GTP activity and triglyceride and pro-inflammatory
cytokine concentrations in patients treated with MEL and L-
tryptophan. Next Celinski et al. (169) compared the efficacy of
MEL and EsF at a dose of 3×1 tablet/14 months in 70 NASH
patients who were randomly assigned to one of the following
groups: I) EsF + tryptophan 2×500 mg/d, II) EsF+MEL 2×5
mg/d, III) only EsF, showing a significant reduction in GGT
activity and triglyceride and LDL-cholesterol levels in groups I
and II (169). MEL concentration after therapy was significantly
increased in groups I and II, with no change in group III. An
important observation was the demonstration of statistically
significantly lower levels of IL-1, IL-6 and TNF-α in patients
receiving MEL and tryptophan, compared to group using EsF
alone (169). In 2017, Pakravan et al. (170) reported the results of
a randomized, double-blinded controlled trial that evaluated the
efficacy of MEL in NAFLD patients compared to placebo. A total
of one hundred patients were enrolled in the study, half of whom
received oral MEL and the other half placebo for 3 months (170).
Data analyzed included weight, waist circumference, systolic
blood pressure (SBP), diastolic blood pressure (DBP), ALT and
AST activity, high-sensitivity C-reactive protein (hsCRP)
concentration, and degree of hepatic steatosis, which did not
differ between groups before MEL treatment (170). In contrast,
the group of patients treated with MEL showed a statistically
greater reduction of DBP (p=0.0001), AST activity (p=0.005) and
hsCRP (p=0.0001). Report lacks data on the MEL dose used
(170). Another double-blind, randomized trial was the study by
Bahrami et al. (171) published in 2020, which included fifty
patients with NAFLD. Patients in the treatment group received 6
mg MEL/d/3 months (171). A significant improvement compared
with the placebo group was observed in weight (p=0.043), waist
circumference (p=0.027), abdominal circumference (p=0.043),
SBP (p=0.039), DBP (p=0.015), leptin serum levels (p=0.032),
hs-CRP (p=0.024), ALT (p=0.011), AST activity (p=0.034) and in
the grade of fatty liver (p=0.020). Finally, in the same year,
Mansoori et al. (172) published a systematic review and meta-
analysis on the significance of MEL in NAFLD patients, which
included only five studies (166, 168-171). The weighted mean
difference (WMD) was computed with 95% confidence interval
(CI) and I2 statistic was used to determine heterogeneity (172).
The significance level was defined as I2 value >50 % or p≤0.05.
The results showed that MEL had a significant effect on AST
(WMD=2.29, [95%CI: 1.14, 3.43] IU/L, p≤0.001), ALP (WMD=
–8.40, [95%CI: –11.33, –5.48] IU/L, p<0.001) and GGT (WMD=
–33.37, [95%CI: –37.24, –29.49] IU/L, p≤0.001) activities, but
had no effect on ALT (172). Based on the meta-analysis, the
authors concluded that the use of MEL may improve some liver
indices in NAFLD patients, but more randomized trials are
needed. Recently, nanomolar concentrations of MEL were found
to regulate insulin synthesis and secretion of this hormone in
insulinoma cells of the INS-1E rat, suggesting the importance of
this endocrine mechanism of diabetes, thus confirming the
pleiotropic nature of this indoleamine (173). In addition, Mel
supplementation counteracted psychosomatic symptoms in
postmenopausal women, strongly recommending the usefulness

of this MEL as an adjuvant in the treatment of mental disorders
(174).

CIRRHOSIS HEPATIS

The cardinal pathologic features of cirrhosis reflect
irreversible chronic injury of the hepatic parenchyma and
include extensive fibrosis with the formation of regenerative
nodules. The pathologic process represents the final common
pathway of many types of advances liver injury, most often
caused by excessive alcohol ingestion, obesity, and chronic viral
infections. An inflammatory response is initiated in extra-
parenchymal cells such as vascular endothelial, stellate and
Kupffer cells, as well as cells of the immune-competent system
(175). This process is made possible by the presence of PRRs
(pattern recognition receptors), which exhibit the ability to
recognize specific pathogen-associated molecular patterns
known as PAMPs (pathogen-associated molecular patterns).
Pathogen eradication can be achieved through the activation of
complex signaling pathways that trigger an inflammatory
response mediated by various cytokines and chemokines. To
date, five classes of PRRs have been characterized, such as Toll-
like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like
receptors (NLRs), C-type lectin-like receptors (CRLs) and AIM-
2-like receptors (ARLs) (176, 177). Another mechanism
mobilizes DAMPs, which are released by cellular stress and
induce an inflammatory response (178). Activation of both
PAMPs/DAMPs mechanisms triggers and amplifies the
synthesis and release of inflammatory and pro-fibrogenic
mediators that recruit immune-competent and matrix-producing
cells: hepatic stellate cells (HSCs), myofibroblasts (MFBs)
(179). More recently, the effects of MEL on DAMPs have
become the focus of research. MEL was shown to inhibit the
intracellular translocation of HMGB1 in intestinal epithelial
cells (IECs), an effect that was partially abolished by the MEL
antagonist luzindolem (180). HMGB1 is located in the cell
nucleus and is integral to oxidative stress and signaling pathways
regulating cell death and cell survival. However, HMGB1
released into the extracellular space induces inflammation by
activating the NF-κB pathway through binding to TLR2, TLR4,
TLR9 and RAGE (181). The effects of MEL on DAMPs have
been demonstrated in few studies (182-184), and only a few of
them focus on liver damage. In rats with streptozotocin (STZ)-
induced diabetes, MEL showed hepatoprotective effects by
preventing deterioration of hepatocyte morphology, DNA
damage, and reducing the severity of necrosis. Serum ALP, ALT,
and AST activity were also significantly lower than baseline
ones (p<0.05). The improvement was due to a reduction in the
total ROS load as a result of a decrease in the diabetes-induced
increase in lipid peroxidation (p<0.05) accompanied by a
decrease in acid polymerase 1 (PARP-1) cleavage and inhibition
of cytoplasmic translocation and associated accumulation of
serum HMGB1 protein (185). In rabbits treated with MEL for
acute liver failure caused by rabbit hemorrhagic disease virus
(RHDV), a significant reduction in the expression of TLR-4
receptor, HMGB1 and Decay-Accelerating Factor (DAF/CD55)
were observed (186). Levels of IL-1β, IL-6, TNF-α and C-
reactive protein were also lowered. The decreased expression of
metalloproteinase-9, Janus kinase, as well as increased
expression of hepatocyte growth factor (HGF), epidermal
growth factor, PDGF-B, vascular endothelial growth factor and
their receptors, mitogen-activated protein kinase (ERK) and
signal transducer and activator of transcription 3 (STAT3) were
also observed (186). In addition, Petrovic et al. (187) provided
evidence of inhibition of HMGB1 and TLR4 fusion and
apoptosis following MEL administration in diabetic rats (13).
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The TLR4/NF-κB/NLRP3 signaling pathway has been shown to
be crucial in the pathogenesis of hepatic ischemia/reperfusion
(HIR) injury. Interestingly, MEL was found to act as a cardiac
antiarrhythmic agent during experimental cardiac ischemia-
reperfusion episodes, however, this effect was limited to the non-
ischemic area of myocardial tissue (188). In addition, MEL
attenuated protein expression of tyrosine hydroxylase, the rate-
limiting enzyme in catecholamine biosynthesis, but was found to
be ineffective in targeting recurrent arrhythmia triggers (188).
Recently, attention has been drawn to the key role of NOD-like
proteins not only in the formation of infections, cancer,
autoimmune and neurodegenerative diseases, but also in the
pathogenesis of metabolic diseases such as obesity,
NAFLD/NASH, T2D. There is growing evidence from a number
of laboratories that NOD-like receptors have a wide range of
recognition, not only of microbial structures, but also of those,
non-infectious factors, associated with tissue damage. They are
involved in inflammatory processes and initiation of apoptosis.
El- Sisi and colleagues (189) showed that octreotide (OCT) and
MEL+OCT significantly inhibited oxidative stress, apoptosis
and inflammation as expressed by decreased expression of
HMGB1, TLR4, MyD88, TRAF-6, p-IκBα (S32), p-NF-κBp65
(S536), NLRP3, ASC, caspase-1(p20) and GSDMD-N. The
similar observations were made by Mohamed et al. (190).
Currently, we have no clinical studies evaluating the efficacy of
MEL in human cirrhosis. However, most animal studies have
established the protective potential of MEL against
experimentally induced cirrhosis using thioacetamide (TAA).
MEL has been shown to inverse TAA-induced phenomena such
as activation of apoptosis and stellate cells, increases in
lipoperoxide and reduced glutathione levels, catalase, and
superoxide dismutase activities (191). These observations have
also been confirmed in other studies. Czechowska et al. (192)
revealed that in Wistar rats with cirrhosis induced by TAA, MEL
at a dose of 10 mg /kg/b.w. for 4 weeks led to a significant
improvement in liver enzyme activity (p<0.001). There was also
a significant reduction in the levels of IL-1β (p<0.05), TNF-α,
IL-6, TGF-β, IL-1β, PDGF-AB, GSH and oxidized glutathione
GSSG (p<0.001). The improvement in liver histology was also
observed. Lebda et al. (193) using the same experimental model
showed that MEL decreases serum activity of aminotransferases
and autotoxin (ATX) as well as serum concentration of bilirubin,
hydroxyproline and urea. In fact, inhibiting ATX can have a
promising therapeutic effect on many diseases, including NASH.
The study also showed that MEL has led to an increase in the
levels of glutathione, glutathione s-transferase, glutathione
peroxidase and other antioxidant enzymes and decrease in
malondialdehyde, protein carbonyl, nitric oxide (NO), and
activation of DNA fragmentation. MEL also led to inhibition of
the expression of pro-inflammatory cytokines and profibrogenic
genes because of an increase in thioredoxin-1 expression
(mRNA increase) (193). In rat model of biliary cirrhosis induced
by bile duct ligation, MEL was shown to have an inhibitory
effect on liver peroxidation and fibrosis and to increase the
activity of antioxidant enzymes (194). Together with the
aforementioned findings normalization of serum
aminotransferases activity, reduction of the hepatosomatic and
splenosomatic index (% of total organ weight relative to the total
weight of the animal) were obtained (194).

As early as 1982, Iguchi et al. (195) showed that MEL
concentrations were significantly elevated in cirrhotic patients
compared to healthy volunteers. The study also showed
correlations between daytime MEL concentrations and the
retention rate of indocyanine green and serum total bilirubin
levels, indicating reduced hepatic clearance, reduced of 6-beta-
hydroxylase activity and competition with bilirubin in the
intrahepatic transport system (195). Also, other studies show that

cirrhotic patients are characterized by increased daytime MEL
levels and delayed nocturnal peak, which generates in this group
of patients a disturbance of the master oscillator manifested by a
phase shift of the biological clock and thus the occurrence of
abnormal circadian rhythms and excessive sleepiness of patients
during the day, and insomnia at night (196-198) without
association with hepatic encephalopathy (198). In the latter
study, it was found that, patients with more severe liver failure
(Child-Pugh score >5) had significantly (p<0.04) lower evening
MEL levels compared to patients with less severe failure (Child-
Pugh score <5) (199). Measurable MEL concentration was also
found in ascites due to cirrhotic portal hypertension (200).
However, the association of the increased MEL levels in
cirrhotic patients with sleep disorders remains controversial
because sleep disorders often occur in diseases that accompany
liver pathology such as T2D (201) and obesity (202). In turn,
sleep disorders can affect eating behavior, hyperinsulinemia, and
obesity (203), with an increasingly raised correlation between
the observations and the gut microbiota as a central pathogenetic
point for the described phenomena in animals (204-206) and
humans (207, 208). In patients with cirrhosis, differentiating
sleep disorder from hepatic encephalopathy, especially its
minimal form, is extremely difficult. It seems that within cases
of encephalopathy, the primary sleep disorders may be subject to
pharmacological correction, e.g., with MEL treatment.
Chojnacki et al. (196, 209) showed that in patients with
alcoholic cirrhosis and encephalopathy, nocturnal serum MEL
concentrations are statistically significantly increased (p<0.01),
while urinary 6-HMS concentrations at the same time are
decreased (p<0.01), and that serum serotonin concentrations are
significantly decreased in patients with Child Pug B and C liver
failure. In 2020, De Silva et al. (210) published the results of a
study on the use of low-dose MEL (3 mg) in patients with early-
stage (Child-Turcotte-Pugh class A or B) cirrhosis with sleep
disturbances, without hepatic encephalopathy showing a
statistically significant improvement in Pittsburgh Sleep Quality
Index (PSQI) and Epworth Sleepiness Scale (ESS) compared to
both pretreatment (p<0.001) and post placebo scores (p<0.001).
Esmaeili et al. (211) published the results of a randomized,
double-blind, placebo-controlled study evaluating the
antipruritic effects of MEL at dose 10 mg over night for 2 weeks
using a Visual Analog Scale (VAS) and the 12-Point Pruritus
Severity Score (12-PSS) in patients with chronic hepatic
diseases of different origin. In the MEL group the VAS scale
showed an alleviation of pruritus (p<0.05), and the 12PSS
decreased by an average of 46.57% (p<0.05). Additionally, the
study assessed Body Surface Area (BSA, adapted from the
Severity Scoring of Atopic Dermatitis Index - SCORAD), which
also improved by 51.71% (p<0.05).

Hepato- and cholangiocarcinoma

Cancer is one of the leading causes of death, a major public
health problem and a barrier to increasing life expectancy.
According to WHO analysis, cancer was the first or second
cause of death before age 70 among 112 countries, and the
second or third among another. Primary liver cancer (PLC) is the
sixth most common cancer and the third cause of death globally
(212). The highest incidence of this type of cancer traditionally
has been seen in Asia, where the incidence is as high as 72.5%
of the global incidence and the mortality rate is 73.3%. The most
common diagnosis, 75%, is primary hepatocellular cancer
(HCC). Trends observed in countries with traditionally
exceedingly high incidence of HCC have improved between
2005 and 2015, with an estimated 3.9% annual decline in
China’s age-standardized incidence rate (ASIR). Unfortunately,
during the same period, the incidence of primary biliary cancer
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(ICC) was increasing, especially in the population of people ≥65
years old (213). The clinical course of HCC is insidious, at the
onset of clinical symptoms patients are usually ineligible for
effective therapy due to the advanced nature of the disease, and
systemic chemotherapy has low efficacy, as demonstrated by
several phase III trials using doxorubicin, sorafenib or the
FOLFOX4 regimen (214). 70–80% of HCC cases develop in
patients with cirrhosis, which is a complex, multi-stage process
involving various initial factors such as steatosis and
steatohepatitis (MAFLD), toxic damage and chronic infections
with primary hepatotropic viruses, especially HBV whose DNA
after insertion in the host genome can lead to deregulation of
such gens like TERT, PDGFR, CCNE1, P53 which are involved
in cell cycle, signaling and replication. In the remaining 30–20%
of cases, the aforementioned factors are thought to trigger
carcinogenesis bypassing the cirrhotic phase (215). A special
subtype of HCC arising in normal livers of usually young
individuals is fibrolamellar carcinoma, in which carcinogenesis
is triggered by a characteristic somatic gene fusion, DNAJB1-
PRKACA, resulting from a deletion in chromosome 19 and
activating protein kinase A (216). The study of the relationship
between impaired MEL secretion and cancer development has
been conducted since the early 1970s. Many exploratory studies
of tumor development in animals have been conducted using the
possibility of chemical induction of cancer using the dye o-
aminoazotoluene, 4-dimethylaminoazobenzene, 7,12-dime-
tylobenzanthracene or N-nitroso-N-methylurea. Also, a number
of naturally occurring materials are hepatocarcinogens, e.g., the
aflatoxin B, a product of the Aspergillus family of molds, which
may contaminate stored foodstuffs, especially grain and nuts.
Administration of MEL to laboratory animals protected them
from the carcinogenic effects of the inducer (217), while surgical
pinealectomy had the opposite effect (218). Moreover, the use of
MEL in the latter group of animals corrected this unfavorable
trend (219). The effect of illumination on the development of
carcinogen-induced tumors was also analyzed. Administration of
MEL to pinealectomized animals and their exposure to constant
24-hour illumination led to a reduction in the number of
adenocarcinomas compared to animals not using MEL. The
timing of the illumination was also of similar importance; fewer
cancers were observed in the group of animals exposed to light
on a 10:14 h diurnal rhythm than in those after 24-hour
exposure. A shorter latency time of chemically induced tumor
was also observed in the group of animals undergoing
pinealectomy and exposed to 24 hours of light exposure, in
contrast to animals undergoing pinealectomy and exposed to 10
hours of light on a daily cycle (220). The epidemiological studies
in humans indicate a link between night work and the risk of for
example, breast cancer in women, while others do not confirm
these observations. Despite the inconclusive results of
epidemiological studies regarding the cancer risk of shift
workers, considering some of them and the theoretical rationale
behind them, the International Agency for Research on Cancer in
2007 identified shift as associated with circadian rhythm
disturbances as a ‘probable’ carcinogen (group 2A). Using data
from 2 prospective cohort studies, the Nurses’ Health Study
(1988–2012; n=78,516) and Nurses’ Health Study II (1989–
2013; n=114,559), Wegrzyn et al. (221) examined the
associations between rotating night shift work and breast cancer
risk. In both cohorts showed 9541 cases of breast cancer over 24
years of follow-up. In the Nurses’ Health Study, women with 30
or more years of rotating shift work did not have a higher risk of
breast cancer (HR=0.95, 95% confidence interval (95% CI):
0.77, 1.17; p for trend = 0.63) compared to those who had never
worked a shift. In the second Nurses’ Health Study II, the risk of
breast cancer was significantly higher in younger women with
20 or more years of cumulative shift work, reflecting the

exposure of younger individuals (HR=2.15, 95% CI: 1.23, 3.73;
p for trend = 0.23), and was marginally significantly higher in
women with 20 or more years of cumulative shift work when
updated exposure information was used (HR=1.40, 95% CI:
1.00, 1.97; p for trend = 0.74). Thus, prolonged rotating night
shift work was associated with a higher risk of breast cancer,
especially among women who did shift work during young
adulthood.

The mechanism of MEL’s anti-neoplastic effects is diverse.
In this regard, the effects of MEL on angiogenesis, oxidative
stress, apoptosis, autophagy, and effects on various intracellular
signaling pathways are considered. The effects of MEL on
angiogenesis are multidirectional. In digestive gastric ulcers,
MEL promotes angiogenesis (222, 223), which accelerates
healing, while in tissue hypoxia, such as age-related or in cancer,
it inhibits neovascularization through inhibitory effects on HIF-
1, HIF-1α, VEGF and sphingosine kinase 1 (SPHK1) (224-227).
The involvement of oxidative stress in the promotion of
oncogenesis needs no justification, and MEL’s action in this
regard has been discussed previously. A distinctive feature of
MEL is its effect on mitochondrial stress (MS), which makes its
action unique. MEL has been shown to induce mitochondrial
apoptosis by inhibiting PrPC prion protein expression in colon
cancer cells (228, 229) and by activating the mitochondrial
serine/threonine kinase PINK1 in rat hepatocytes (230). MEL
has also been shown to alleviate MS stress-induced insulin
resistance and that it sensitizes cells to apoptosis by inhibiting
COX expression, increasing the Bax/Bcl-2 ratio and
chemotherapy regimen (CHOP) (231). As for autophagy, the
effect of MEL on this process is diverse and depends on the cell
type. For example, Tran et al. (232) showed that MEL exhibited
synergism with doxorubicin in activating apoptosis in breast
cancer cells and enhances the therapeutic effect of doxorubicin
by inducing autophagy. Other researchers have shown that
autophagy may be a therapeutic target in colorectal cancer. Zhao
et al. (233) found a synergistic anti-tumor effect of MEL and
Andrographis paniculata (AnP) (p<0.05) in reducing the
viability of colon cancer cells, as well as an inhibitory effect on
colony formation and stimulation effect on apoptosis. The study
also showed that the combination of MEL and AnP inhibited
autophagy by affecting the expression of such autophagy-related
genes as NR4A1, CTSL and Atg12 (223). Similar observations
were made by Chok et al. (234), who analyzed autophagy
pathways in HT-29, SW48 and Caco-2 cells and showed that
MEL increased CRC death, oxidative stress and autophagic
vacuole formation in a dose-dependent manner. All mechanisms
of carcinogenesis described for other organs are considered in
hepatic carcinogenesis. Kimball et al. (235) in cultured hepatic
H4IIE cells evaluated the effects of MEL on hydrogen peroxide
(H2O2)-induced activation of mitogen-activated protein kinase
(MAPK) and the mTOR signaling pathway, demonstrating the
inhibitory effects of MEL in this regard by inhibiting p38
phosphorylation and the ERK1/2 signaling pathway. This study
also showed that MEL inhibited the phosphorylation of Akt and
the final product of the mTOR signaling pathway, the eukaryotic
translation initiation factor 4E-binding protein 1 (4E-BP1),
which initiates the translation of key proteins for cell cycle
progression. Remarkably interesting is a previously unpublished
study by Lee et al. (236), who analyzed the effect of MEL on the
behavior of mTORC1 activity and glycolysis-related gene
expression in Hep3B and Huh7 HCC cell cultures. They showed
that as early as 3 hours after MEL treatment, mTORC1 activity
as measured by the expression of phosphorylated mTOR and
ribosomal kinase S6 significantly decreased while the
expression of c-Myc and glycolysis-related genes remained
unchanged (236). If the test cultures were subjected to further
prolonged MEL treatment, they showed a reduction in
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glycolysis, cell proliferation and viability, and activation of
apoptosis and in expression of c-Myc in a dose-dependent
manner. It was also shown that in HepG2 liver cancer cell
cultures, MEL inhibited the activity of metalloproteinase 9
(gelatinase) by suppressing the expression of the encoding gene
and increasing the levels of the tissue inhibitor of
metalloproteinases, TIMP-1, and reducing nuclear translocation
of NF-κB (237).

In contrast, there were no significant changes in the activity
of MMP-2 and its tissue inhibitor, TIMP-2. Yeh et al. (238) made
similar observations, although the study was conducted on
HSC3 and OECM-1 oral cancer cell cultures, showing that MEL
decreased the activity of the MMP-9, as well as the mRNA and
protein expression of MMP-9. In addition, MEL was shown to
inhibit phosphorylation of the ERK1/2 signaling pathway, which
inhibited MMP-9 gene transcription by affecting the expression
of transcription coactivators such as CREB-binding protein
(CREBBP) and E1A p300-binding protein (EP300), as well as
reducing histone acetylation in the cultures studied (238). In
contrast to the previous study, no effect on nuclear translocation
of NF-κB was shown. The anti-angiogenic effects of MEL were
demonstrated in HepG2 liver cancer cell cultures (239), in which
MEL at a concentration of 1 mM was shown to reduce both
cellular and secreted VEGF levels and prevent hypoxia-induced
tube formation of HUVECs that was associated with decreased
Hif1α protein expression, nuclear localization and
transcriptional activity. While hypoxia increased STAT3, Hif1α
phosphorylation and CBP/p300 recruitment as a transcriptional
complex within the VEGF promoter, MEL reversed these
processes (238). In another study, El-Magd (240) showed that
preconditioning MSCs stem cells with MEL in female rats
protected them from diethyl-nitrosamine-induced HCC by
inducing apoptosis as indicated by increased expression of such
proapoptotic genes as Bax and caspase-3 and decreased anti-
apoptotic genes such as Bcl2 and survivin. Administration of
MEL-conditioned cells simultaneously led to decreased
inflammation and angiogenesis as indicated by decreased
expression IL-1β, NF-κB, vascular endothelial growth factor,
MMP-9, with increased metalloproteinase inhibitor gene 1. The
same center also showed that in laboratory animals with DEN-
induced HCC, liver tissue was characterized by low levels of
apoptosis as indicated by a reduction relative to the control of
DNA fragmentation and expression of genes such as p53,
caspase 9 and 3, and an increase in IL-6 and TGF-β1. All adverse
events were reversed by MEL and MSCs (241). Under
experimental conditions, MEL prevented thioacetamide-induced
liver fibrosis and hepatotoxicity in rats by modulating pro-
inflammatory cytokines and attenuating thiobarbituric acid-
reactive compounds (242).

Despite the theoretical rationale, studies regarding the use of
MEL in human cancer patients are rare. Barni et al. (243)
evaluated the efficacy of the combined use of IL-2 and MEL as
second-line therapy in thirteen patients with CRC and liver
metastases after initial therapy with 5-fluorouracil. IL-2 was
administered at 3 million IU/day for 6 days/week for 4 weeks,
and MEL was administered at 50 mg/day orally at 8.00 p.m. each
day. As the study showed, there was no objective tumor
regression, while disease stabilization was observed in 4/13
patients (median duration 5+ months), with the remaining 9
patients experiencing disease progression. The mean number of
lymphocytes, eosinophilia, neopterin and TNF significantly
increased during treatment. In a subsequent study, Lissoni et al.
(244) evaluated the efficacy of the combined use of IL-2 and
MEL in solid tumors other than renal cell carcinoma and
melanoma, which are generally resistant to IL-2 alone. IL-2 was
used similarly to the previous study while MEL was administered
at a dose of 40 mg/day orally, starting 7 days before the first IL-

2 administration. Eighty-two patients were analyzed, of whom
seventy-two had distant organ metastases, and the histological
types of tumors were as follows: non-small cell lung cancer - 19,
HCC - 16, CRC - 15, gastric cancer - 11, pancreatic cancer - 11,
breast cancer - 6; others - 4. Objective tumor regression was
achieved in seventeen patients, disease stabilization was achieved
in thirty patients, while the remaining thirty-five patients
experienced progression. In one of the few human studies, Yan et
al. (245) compared the efficacy of a trans-catheter arterial
chemoembolization (TACE) with TACE in combination with
MEL at a dose of 20 mg/d preceding 7 days before of TACE in
the treatment of inoperable HCC. The efficacy of TACE vs.
TACE+MEL was 16% and 28%, respectively (p<0.05). The
survival rate at 6-month, 12-month and 2 years was 82%, 54%
and 26% in the group of patients treated only with TACE, while
in the TACE+MEL group it was 100%, 68% and 40% of all
patients, respectively. Moreover, in patients treated with
TACE+MEL, the percentage of patients who underwent two-
stage resection was 14%, while in the group treated only with
TACE it was 4% (p<0.01). Research on the use of MEL in
patients with CCC are inconclusive. Reduction in the activity of
enzymes such as N-acetyltransferase and serotonin O-
methyltransferase in cell cultures and human biopaths and an
increase in the expression of MEL MT1/MT2 receptors have
been reported.

LIVER TRANSPLANTATION AND SURGERY

Liver transplantation is highly effective treatment for
patients who suffer from a variety of irreversible progressive
liver diseases for which there is no acceptable, alternative
therapy. Unfortunately, the number of potential recipients
significantly exceeds the number of available donors. Reducing
this disproportion is very difficult, which is why it has become
common to use organs with a risk of inferior function after
transplantation, e.g. from older donors and/or those with brain
death after prolonged hospitalizations and such risk factors for
deterioration of liver function as systemic ischemia in the course
of multi-organ trauma, hemorrhagic shock, heart failure and
others, which within the liver lead to oxidative stress,
inflammatory immune response, apoptosis, Kupffer cell
activation and increased vascular cell adhesion molecule
expression (245, 247). Thus, methods are still being sought that
can improve the situation, and MEL, due to its pleiotropic
properties, may play a vital role in this regard. The first step on
the road to transplantation is to keep the donor organ in decent
shape, and in this regard, preservation solutions play a
significant role. Currently, four types of standard preservative
solutions are in use: University of Wisconsin (UW), Institute
Georges Lopez (IGL-1), Celsior solution (CE) and histidine-
tryptophan-ketoglutarate (HTK) solution, whose effectiveness in
sustaining transplantation has been evaluated in a study by Adam
et al. (248) who showed that overall, 3-year graft survival was
higher with UW, IGL-1 and CE (75%, 75% and 73%,
respectively), compared to the HTK (69%) (p<0.0001) and the
similar observation was made for partial grafts in which a 3-year
graft survival was 89% for IGL-1, 67% for UW, 68% for CE and
64% for HTK (p=0.009). The use of MEL as a component of
preservative solutions has been the subject of few studies before.
For instance, Zaouali et al. (249) studied the use of MEL added
to IGL-1 solution in an ex vivo perfusion model of isolated rat
livers. The livers were stored at 4ºC/24 h in UW or IGL-1
solutions with or without MEL, and then reperfused at 37ºC.
IGL-1+MEL-perfused organs showed lower aminotransaminase
activity. Liver function was assessed by the degree of bile
production and sulfobromophthaline clearance - both of which
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were increased. In addition, IGL-1+MEL was also shown to
reduce vascular resistance probably by a mechanism of e-NOS
activation leading to increased of nitric oxide concentration, and
to have anti-oxidative and anti-inflammatory effects associated
with inhibition of the release of pro-inflammatory cytokines,
especially TNF and adiponectin (249). In a further report,
Zaouali et al. (250) published the results on the effects of MEL
and trimethazine (TMZ) added to IGL-1. Analogous to the
previous study, rat livers were preserved in UW or IGL-1 with or
without MEL+TMZ and subjected to 24-hour reperfusion at
37ºC. As shown, liver preservation with IGL-1+MEL+TMZ
caused a significant decrease in endoplasmic reticulum (ER)
stress - a decrease in GRP78, PERK, and CHOP, activation of
AMPK which in turn led to a decrease in ER stress and
autophagy. Gnal et al. (251) evaluated the hepaprotective
efficacy of a UW solution containing MEL at a concentration of
130 µmol/L in Wistar rats, showing that MEL exhibited
significant anti-inflammatory and protective effects on Kupffer
cells (p<0.05) and that the activity of enzymes such as LDH,
AST and ACP were significantly lower compared to the control
group. Another interesting observation in this study was the
demonstration of an increase in the expression of heat shock
proteins HSP70, which maintain normal cell homeostasis,
restore normal cell function, and protect cells from damage by,
among other things, reducing lipid peroxidation (251). Other
researchers (252, 253) showed that the application of MDDP
solution (pentoxifylline, glycine, deferoxamine, N-
acetylcysteine, erythropoietin, MEL, and simvastatin) prior to
liver reperfusion with HTK led to inhibition of malondialdehyde
and IL-1 production, thereby completely abolishing the
inflammatory response, reducing hepatocyte dysfunction and
damage, and infiltration of the liver with inflammatory cells.
Comparable results were reported in other studies by Vairetti et
al. (254) and Freitas et al. (255). In the first one liver of Wistar
rats were stored at UW and CE after perfusing with Krebs-
Henseleit bicarbonate buffer (KHB) without or with MEL and a
dose-dependent increase in bile production and tissue ATP levels
were shown. The second group of investigators additionally
showed that LDH and GSH activities in MEL-treated rats were
similar to control values, with lower levels of ROS (255). Kireev
et al. (256) studied the effects of MEL administered
intraperitoneally and/or orally in Zucker rats, in which
reperfusion of their own liver was performed after prior ligation
of the portal vein and hepatic artery. As shown, MEL decreased
ALT, AST activity and reduced the increase in oxidative stress
exponents by both the mechanism of free radical scavenging and
the increase in antioxidant enzyme expression (256). MEL also
improved mitochondrial function and the ability of hepatocytes
to produce ATP, and reduced the expression of pro-apoptotic
genes and has also been shown to stimulate mitochondrial
glutamate dehydrogenase activity, which reduces the release of
cytochrome C and caspase-3 in rat hepatic IRI (257, 258). Other
researchers have shown in animal models that the application of
MEL inhibited the production of TNF-α (259, 260), iNOS and
NO as well as exerted a hepatoprotective effect by inhibiting
kinases such as IKK and the JNK pathway (261, 262). The last
cited study does not involve liver IRI but acute cerebral
ischemia, however, deserves attention because of its quality, and
the conclusions are potentially transferable to all other tissues
(262). As is well known, IRI leads to an immune inflammatory
response during which there is an increase in the concentrations
of many pro-inflammatory cytokines such as interleukins IL-1β,
IL-6, TNF-α and IFN-γ which can lead to rapid rejection of the
transplanted organ. In this regard, the use of MEL has been
shown to reduce the concentrations of pro-inflammatory
cytokines. In study by Kireev et al. (263) using the model
described earlier, they evaluated the concentration of pro-

inflammatory cytokines and the effect of age and intraperitoneal
administration of MEL on the expression of multiple genes.
Older animals showed greater liver damage, higher ALT and
AST activity and expression of genes encoding such cytokines
as IL-1β, MCP-1 and IFN-γ, as well as lower mRNA expression
for IL-10 compared to young animals after IRI. The expression
of proapoptotic genes (Bax, Bad and AIF) was significantly
increased (263). MEL administration led to a reversal of these
adverse phenomena. In experimental studies, MEL also
influenced autophagy processes and phosphorylation of mTOR
(mammalian target of rapamicin), which is a common, highly
conserved serine/threonine kinase that binds to raptor or riptor
and other proteins, forming mTORC1 and mTORC2 complexes
in turn (264). The functions and signal transduction pathways of
mTORC1, which affects key biological functions such as the cell
cycle and gene expression, are fairly well understood (264). The
complex has been shown to act by directly activating p70SK1
kinase and inhibiting 4E-BP1 binding protein (264), and that
MEL inhibits mTOR-dependent autophagy (265). Similar
observations were also made by Mohamed et al. (190), who
compared the hepatoprotective effects of octreotide (OCT) and
MEL in IRI by modulating autophagy, which was normalized by
OCT by increasing the expression of Beclin-1, ATG7 and LC3,
while decreasing the expression of p62 through induction of
AMPK/S317-ULK1 and inhibition of PI3K/AKT/mTOR/S757-
ULK1 signaling pathways. MEL affected autophagy by
inhibiting AMPK/pS317-ULK1 but its effect was less
pronounced than OCT. Kirimlioglu et al. (266) showed that the
use of reservatrol (REZ) and MEL in Wistar rats after partial
hepatectomy (70%) prevented lipid peroxidation and reduced
hepatic GSH and NO levels (p<0.05) and Ki-67 expression, not
a histone nuclear protein present in all phases of the cell cycle
except G0. The treatment with REZ and MEL significantly
enhanced apoptosis (p<0.001), with MEL more than REZ
(p<0.05). One of the earliest clinical experiments on the use of
MEL in human liver surgery was published as the PORTAL trial,
which showed that a single preoperative dose of MEL was safe
in patients with planned extensive liver resection (267).
Subsequently, Nickkholgh et al. (268) showed that MEL in high
dose (50 mg/kg b.w.) administered preoperatively through a
nasogastric tube was remarkably high effectively absorbed from
the gastrointestinal tract (p<0.0001) and resulted in a
postoperative reduction in aminotransferase activity (p=0.6)
with no serious adverse events. Improving the quality of organs
intended for transplantation by mitigating I/R damage still
remains a major challenge.

Recently an increased clinical use of MEL has been
observed worldwide. In the United States, MEL is considered a
dietary supplement and is available in health food stores. Sales
of MEL in the United States increased by more than 500%
between 2003 and 2014. In Japan, Australia and in the most
countries of the European Union, MEL is available only with
prescription (269). People commonly use MEL for insomnia and
jetlag; however, MEL is also used for sleep-wake cycle
disturbances in blind people and shift workers and in patients
with neurodegenerative, liver, and cardiovascular diseases. Oral
MEL is safe for adults in a dose up to 10 g daily, however, it can
cause some side effects including nausea, headache, dizziness,
less common others. However, special attention should be paid
to patients with autoimmune diseases. Hong et al. (270) reported
a patient in whom clinical, laboratory and histologic features of
autoimmune hepatitis developed after beginning MEL therapy
for the treatment of insomnia. Fourman et al. (271) described a
case of autoimmune hepatitis that developed after starting
ramelteon (agonist melatonin) for insomnia. As it was mentioned
before we also described a case of a patient suffering from
ulcerative colitis accompanied by overlap syndrome with PSC

121



and AIH, who developed a severe hepatitis manifested by
multiple increases in aminotransferases activity after two
separated courses of MEL treatment (153). Moshtagh-Sisan et
al. (272) described a 78-year-old female in whom clinical and
histological manifestations of autoimmune hepatitis developed
during MEL therapy for insomnia. In all the above-mentioned
cases MEL discontinuation led to normalization of liver
enzymes and reduction of symptoms.

In the last years substantial progress has been accomplished in
our understanding of the MEL pleiotropic mechanisms of action.
The purpose of this review is to provide information regarding the
potential benefits of MEL use in hepatobiliary diseases. Beside its
well-known action as circadian regulator of physiological and
neuroendocrine function, MEL and its metabolites possesses
potent antioxidant properties by scavenging free oxygen
metabolites and inducing the expression of antioxidant enzymes.
Experimental studies demonstrated that MEL ameliorated hepatic
injury caused by various etiopathology factors, however the
translation of these observations to human hepatobiliary disorders
was less well proven. The data from the literature indicate that
MEL may be an important therapeutic tool for the management of
a number of hepatic disorders, however, more extensive clinical
studies with larger sample size are required.
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