Optimizing the Design of Surface-Acoustic-Wave Ring Resonator by Changing the Interdigitated Transducer Topology

Author:

Shevchenko S. Yu.1ORCID,Mikhailenko D. A.1ORCID,Nyamweru B.2

Affiliation:

1. Saint Petersburg Electrotechnical University

2. College of Business Education CBE

Abstract

Introduction. Previous works considered the frequency characteristics and methods for fixing sensitive elements in the form of a wave ring resonator on surface acoustic waves in a housing made of various materials, as well as the influence of external factors on sensitive elements. It was found that the passband in such a case is sufficiently wide, which can affect adversely signal detection when measuring acceleration using the sensitive element under development. Therefore, it has become relevant to reduce the sensitive element’s bandwidth by changing the design of the interdigitated transducer (IDT).Aim. To demonstrate an optimal topology for an IDT with a low bandwidth, leading to improved signal detection when acceleration affects the sensitive element.Materials and methods. The finite element method and mathematical processing in AutoCAD and in COMSOL Multiphysics.Results. Nine topologies of IDT are proposed. All these types were investigated using the COMSOL Multiphysics software on lithium niobate substrates, which material acts as a sensitive element. The frequency characteristics are presented. The data obtained allowed an optimal design of the ring resonator to be proposed: an IDT with rectangular pins without selective withdrawal.Conclusion. Self-generation in a ring resonator can be performed by withdrawing no more than one pair of IDTs for 10 or more periods. In this case, the withdrawal of IDTs should be uniform. With an increase in the number of IDT withdrawals, the geometry of the ring resonator is violated, and the wave leaves the structure. The presence of a shared bus keeps the surface acoustic wave inside the IDT structure, and the narrowing of the periods towards the inner part of the structure makes it possible to improve the frequency characteristics of the ring resonator on surface acoustic waves.

Publisher

St. Petersburg Electrotechnical University LETI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3