miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/ TXNIP/NLRP3 pathway

Author:

Shi Yu,Li Zhendong,Li Ke,Xu KeORCID

Abstract

Objective: Cerebral ischemia/reperfusion (I/R) injury is stimulated by blood restoration after ischemic stroke. Inflammatory response and inflammasome activation exerted vital functions in the development of cerebral I/R injury. miR-155-5p regulates inflammatory response in some diseases, while its role in inflammatory response and inflammasome activation of cerebral I/R injury development is unclear. Hence, the research focuses on investigating if miR-155-5p attenuate cerebral I/R injury via regulating inflammatory response and inflammasome activation and exploring the potential mechanism. Methods: The oxygen-glucose deprivation/reoxygenation (OGD/R) model and the middle cerebral artery occlusion (MCAO) model were constructed. Cell viability and cytotoxicity were reflected by CCK-8 assay and LDH activity. The inflammatory cytokines secretion was determined using ELISA assay. Brain tissue infarction was evaluated using TTC staining. Results: miR-155-5p, Thioredoxin Interacting Protein (TXNIP) and NLR Family Pyrin Domain Containing 3 (NLRP3) were highly expressed in OGD/R model and MCAO rats. Knockdown of miR-155-5p alleviated cell injury, cell inflammation, and cell pyroptosis stimulated by OGD/R. Besides, miR-155-5p regulated TXNIP/NLRP3 pathway through modulating Dual-Specificity Phosphatase 14 (DUSP14) expression. Furthermore, knockdown of miR-155-5p improved brain tissue infarction and inhibited inflammation response and cell pyroptosis of MCAO rats. Conclusion: Knockdown of miR-155-5p attenuated I/R inflammation and cell pyroptosis of cerebral via modulating DUSP14/TXNIP/NLRP3 pathway. These findings may provide a promising strategy to attenuate cerebral I/R injury.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3