Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway

Author:

Wang Heng,Ren Bingbing,Pan Jun,Fu Siqi,Liu Chunxiang,Sun Daqing

Abstract

Objective: To explore the mechanism by which miR-129-3p affected the autophagy of interstitial cells of Cajal (ICCs) in slow transit constipation tissues through the SCF C-kit signaling pathway. Methods: Colon samples from 20 Slow transit constipation (STC) patients who underwent total colectomy plus ileorectal anastomosis or subtotal colon resection plus anti-peristaltic rectal anastomosis were collected in our hospital. The colon of 20 non-STC patients was used as control. The control of this study was 20 patients undergoing radical surgery for colon cancer (left colon cancer) in our hospital. Fifty healthy SPF Kunming mice were purchased from Liaoning Changsheng Biotechnology Co., Ltd. Results: The mRNA expression of miR-129-3p in the STC group was lower than that in the control group (CTLR) group (P<0.05). The mRNA expression of miR-129-3p in STC group was lower than that in the NC group (P<0.05), and mRNA expression in STC+miR-129-3p group was higher than that in STC+miR-NC group (P<0.05). In the first week, the weight of dry and wet feces of the STC group was lower than that of the NC mice (P<0.05), and the weight of dry feces and wet feces of the STC group was lower than that of the NC group at the 2, 3, and 4 weeks, STC+miR-129 -3p was higher than that in the STC group (P<0.05). Conclusion: The increased expression of C-kit and SCF regulated by miR-129-3p contributed to the protection of interstitial cells. Knockdown of miR-129-3p expression could inhibit the activation of AKT/mTOR signaling pathway, reduce cell proliferation activity.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3