Prof. Transient receptor potential vanilloid 4 promotes the growth of non-small cell lung cancer by regulating Foxp3

Author:

Pu Jiang-tao,Zhang Tao,He Kai-ming,Zhang Deng-guo,Teng Zhang-yu,Wu Yun-fei

Abstract

Objective(s): Transient receptor potential vanilloid 4 (TRPV4) participates in malignant tumor. However, the role of TRPV4 in non-small cell lung cancer (NSCLC) remains unclear. In this study, we demonstrated TRPV4 was upregulated in NSCLC tissues and NSCLC cell lines. Materials and Methods: TRPV4 level in the NSCLC patients and cell lines were detected, and its function was studied both in vivo and vitro. Results: The level of TRPV4 showed a positive correlation with tumor size of NSCLC patients. Activation TRPV4 by agonist GSK1016790A promoted cell proliferation and decreased apoptosis in A549 cells, and these effects were enhanced when the cells have overexpressed TRPV4. Moreover, GSK1016790A induced inhibitory effects on apoptosis of A549 cells was impaired when GSK1016790A used together with TRPV4 selective antagonist HC-067047, or impaired when the cells have already downregulated TRPV4 expression by TRPV4 siRNA. In vivo study, pharmacological inhibition of TRPV4 prevented A549 cells transplanted tumor growth. It was showed Foxp3 level was significantly increased in the NSCLC tissues, and showed a positive correlation with the level of TRPV4. Deactivation of TRPV4 using TRPV4 siRNA or HC-067047 significantly reduced expression of Foxp3 in GSK1016790A treated NSCLC cells. Moreover, downregulation Foxp3 by transfection of Foxp3 siRNA significantly impaired TRPV4 induced NSCLC cells proliferations in vitro. Conclusions: Antitumor effects caused by TRPV4 inhibition in NSCLC might be attributed to the suppression of Foxp3 which induced subsequent cell apoptosis. Thus, pharmacological inhibition of TRPV4 may be a promising option for NSCLC treatment.  

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3