Timosaponin AIII attenuates precocious puberty in mice through downregulating the hypothalamic-pituitary-gonadal axis

Author:

Zhou LiliORCID,Ren Yaoquan,Li Dongmei,Zhou Weiwei,Li Chengke,Wang Qiang,Yang Xiangzheng

Abstract

Precocious puberty (PP) has increasingly become a social concern. This study aimed to investigate the effect of timosaponin AIII (TAIII) on the precocious puberty and its possible mechanisms in mice. Four groups of mice consisting of controls that received saline or TAIII, a model that received leptin to induce precocious puberty (PP), and leptin+TAIII (the leptin model treated with TAIII) were used to determine the effect of TAIII on PP. Pathological and cytological examinations were conducted to investigate the signs and onset of PP and the development of reproductive organs. The level of serum luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) were determined using enzyme-linked immunosorbent assay (ELISA). The expression of genes related to the hypothalamic-pituitary-gonadal axis (HPGA) was assessed using qRT-PCR and Western blotting. Bone mineral density (BMD) was determined using high resolution peripheral quantitative computed tomography. In mice treated with leptin, earlier vaginal opening and estrus were observed, as well as the increased ovarian and uterine weight, total uterine cross-sectional size, number of corpora lutea, and elevated serum sex hormone levels and HPGA expression. On the other hand, TAIII treatment delayed the vaginal opening and vaginal estrus to 32.1 and 37.5 days after birth, and delayed the development of reproductive organs, leading to significantly smaller uterus and ovary size, less corpora lutea and low BMD (P<0.05). In addition, the serum levels of LH, FSH and E2 were significantly reduced (P<0.05) and so was the expression of HPGA and leptin genes (P<0.05). Our experimental data demonstrated that TAIII has activity against leptin-induced PP activity and may attenuate PP by reducing reproductive hormones and deactivating the hypothalamic-pituitary-gonadal axis through downregulating leptin expression.

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3