Rough Hardy-Littlewood Operators on $$p$$-Adic Function Spaces with Variable Exponents
-
Published:2024-07-30
Issue:3
Volume:16
Page:219-232
-
ISSN:2070-0466
-
Container-title:p-Adic Numbers, Ultrametric Analysis and Applications
-
language:en
-
Short-container-title:P-Adic Num Ultrametr Anal Appl
Author:
Dung K. H.,Thuy P. T. K.
Publisher
Pleiades Publishing Ltd
Reference29 articles.
1. A. Almeida and D. Drihem, “Maximal, potential and singular type operators on Herz spaces with variable exponents,” J. Math. Anal. Appl. 394, 781–795 (2012).
2. A. V. Antoniouk, A. Y. Khrennikov and A. N. Kochubei, “Multidimensional nonlinear pseudo-differential evolution equation with $$p$$-adic spatial variables,” J. Pseudo-Differ. Oper. Appl. 11 (1), 311–343 (2020).
3. S. Albeverio, A. Y. Khrennikov and V. M. Shelkovich, “Harmonic analysis in the $$p$$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $$p$$-adic wavelets, Tauberian theorems,” J. Fourier Anal. Appl. 12 (4), 393–425 (2006).
4. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Springer-Basel, 2013).
5. L. F. Chacón-Cortés and H. Rafeiro, “Variable exponent Lebesgue spaces and Hardy-Littlewood maximal function on $$p$$-adic numbers,” $$p$$-Adic Num. Ultrametr. Anal. Appl. 12, 90–111, (2020).