Neptunium redox speciation

Author:

Antonio R.,Soderholm L.,Williams C.W.,Blaudeau J.-P.,Bursten B. E.

Abstract

Insights about the redox speciation of neptunium in an aqueous mineral acid electrolyte were obtained through a combination of in situ EXAFS (extended X-ray absorption fine structure) spectroelectrochemistry, density functional theory (DFT), and simple geometric modeling. A single solution of neptunium in 1 M perchloric acid was used to extract metrical information about the Np coordination environment, in terms of hydration numbers (n) and Np-O interatomic distances. Four aquo ions - Np3+·nH2O, Np4+· n´H2O, [Np5+O2]+· n´´H2O, and [Np6+O2]2+· n´´´H2O - were electrolytically prepared and precisely maintained by use of constant potential bulk electrolysis (with coulometry) throughout the simultaneous EXAFS data acquisition. For the Np(III) and Np(IV) aquo ions, the experiments revealed a contraction of the average Np-O bond lengths from 2.48(2) to 2.37(2) Å, respectively. The data analyses suggest that there are 9 water molecules in the first or inner hydration sphere about Np3+in [Np(OH2)9]3+and Np4+in [Np(OH2)9]4+. The DFT calculations reveal 8-9 water molecules coordinated to Np(III), supporting the EXAFS results. Simple geometric modeling supports a coordination number of 8 for both trivalent and tetravalent Np. For the Np(V) and Np(VI) aquo ions, the EXAFS revealed bond length contractions. The average interatomic distances for the trans-dioxygen atoms in [NpO2]+and [NpO2]2+decreased from 1.80(2) Å for Np(V) to 1.73(2) Å for Np(VI). The average interatomic distances to the oxygen atoms of the coordinated H2O molecules decreased from 2.44(3) Å to 2.36(3) Å, respectively. The oxygen coordination numbers were identical, suggesting that 5 water molecules are bound to Np5+in [NpO2(OH2)5]+and to Np6+in [NpO2(OH2)5]2+.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Redox Potentials for U, Np, Pu, and Am in Aqueous Solution;The Journal of Physical Chemistry A;2024-07-03

2. Insights into the Mechanism of Neptunium Oxidation to the Heptavalent State;Chemistry – A European Journal;2024-03-12

3. Assessment of heavy metal stability in biochar-treated soil;Biochar Application in Soil to Immobilize Heavy Metals;2024

4. Np(V) Retention at the Illite du Puy Surface;Environmental Science & Technology;2023-07-17

5. Synchrotron radiation techniques and their application to actinide materials;Reviews of Modern Physics;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3