Effects of aging-induced obesity on the transcriptional expression of adipogenesis and thermogenic activity in the gonadal white adipose, brown adipose, and skeletal muscle tissues

Author:

Kwon Insu,Talib Nurul Fatihah,Zhu JunShu,Yang Hyung-In,Kim Kyoung Soo

Abstract

[Purpose] Aging is closely associated with chronic metabolic diseases, such as obesity, which lead to increased adiposity, skeletal muscle wasting, and imbalanced cellular energy metabolism. However, transcriptional profiles representing energy imbalances in aging-induced obesity are not fully understood. Thus, this study aimed to investigate the candidate genes predominantly regulated in aging-related obesity in spontaneously aged mice.[Methods] Male C57BL/6J mice were divided into three age groups according to age: 2- (young), 12- (middle-aged), and 24- (old) months. Body weight and body composition parameters were measured in all mice. Gonadal white adipose tissue (gWAT), brown adipose tissue (BAT), and skeletal muscle (SM) were dissected and weighed. The target tissues were assessed using biochemical and histological assays.[Results] Aging-induced obesity increased adipose mass and decreased SM weight through processes of adipocyte hypertrophy; however, recruitment of modulating adipogenesis-inducing transcription factors did not occur. Among adipokines, leptin level was greatly increased in the gWAT during aging. Interestingly, the β2-adrenergic receptor had a higher affinity than the β3-adrenergic receptor in aging-induced obesity. For the thermogenic regulation through β-adrenergic receptors (β-ARs), a declined uncoupling protein-1 (UCP-1) in the BAT was relevant to aging-induced obesity.[Conclusion] Aging-induced obesity increases leptin levels in adipocytes and decreases UCP-1 in BAT through β-ARs, according to transcriptional gene profiling. WAT browning increases energy expenditure due to exercise training adaptations. Further research is needed to discover more effective methods, such as exercise, against aging-induced obesity.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Korea Society for Exercise Nutrition

Subject

Nutrition and Dietetics,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Physiology,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3