Dynamics of Steady-State Gravity-Driven Inviscid Flow in an Open System

Author:

Adeeyo Opeyemi AdewaleORCID,Adefila Samuel Sunday,Ayeni Augustine OmoniyiORCID

Abstract

Various factors can be responsible for the flow of incompressible fluid under gravity. Torricelli's theorem gives the relationship between the efflux velocity of an incompressible, gravity-driven flow from an orifice and the height of liquid above it. The concept of the original derivation of Torricelli’s theorem is limited in application because of certain inherent assumptions in the method of derivation. An alternate method of derivation is the use of Bernoulli’s principle. However, its result tends towards Torricelli’s flow only with some assumptions. In this study, an inherent assumption was incorporated into the conventional method of derivation to obtain an amended Torricelli’s equation. This study also considers a more general approach of derivation with Bernoulli’s principle, which tends to eliminate some of the limitations. The method involves the theoretical construction of gravity-driven flow from the bottom of a reservoir that is opened to atmospheric pressure. Bernoulli’s equation, with the continuity equation, is applied to gravity-driven open flow. The derived equations are used to analyze the prerequisite conditions for vertical flow in an open system and the variables that affect the flow rate. It is assumed that the flow is steady, inviscid, and has one inlet port and one exit port. Findings show that the surface area ratio of discharge to upstream, which was neglected in the convectional Torricelli velocity, can influence the velocity significantly. The study shows that a high surface area ratio can be used to augment the velocity of established flow for a decreased flow height.

Publisher

Innovative Research Publishing

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3