Ameliorative Effect of Chitosan-Propolis Nanoparticles on the Estradiol Valerate-Induced Polycystic Ovary Syndrome Model

Author:

Hosseini Seyede Fatemeh,Khodaei Forouzan,Hasansagha Zeynab,Khosravizadeh Hamidreza,Abdollahi Mostafa,Azaryan Ehsaneh

Abstract

Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting women. Previous research has shown that PCOS is associated with insulin resistance, oxidative stress, and immune system malfunctions. Also, the antioxidant effects of propolis and the positive effects of chitosan nanoparticles on the reproductive system have been demonstrated in some reports. Objectives: The current study is designed to investigate the protective effects of chitosan-propolis nanoparticle against estradiol valerate-induced (EV) PCOS model of rats compared to metformin (Met) (as a control treatment). Methods: Intramuscular injection of EV (4 mg/kg, 28 days) was used to induce PCOS in rats, followed by oral administration of 500 mg/kg chitosan-propolis nanoparticle for 42 days. Rats were divided into 4 groups: Control, PCOS, metformin (PCOS and 150 mg/kg metformin), and chitosan-propolis nanoparticles (PCOS and chitosan-propolis nanoparticle administration, 500 mg/kg) groups. Results: All animals were subjected to serum factors analysis and histopathological study of ovaries. Estradiol valerate-induced induced PCOS while administration of chitosan-propolis nanoparticle recovered it. The body weight (P < 0.01) and ovarian morphology improved. The serum biochemical parameters, including estrogen (P < 0.05), progesterone (P < 0.001), vitamin D (P < 0.01), calcium (P < 0.01), and insulin resistance index (P < 0.05) were reversed after chitosan-propolis nanoparticle intervention. These EV-induced alterations included inhibited superoxide dismutase (SOD) activity (P < 0.05) and increased malondialdehyde (MDA) level (P < 0.001), and it was demonstrated that chitosan-propolis nanoparticle/Met administered for 42 consecutive days and gavages with EV reversed the oxidative stress factors. Additionally, in EV-treated animals, there was a significant upregulation of certain relative mRNA expressions, such as monocyte chemoattractant protein (MCP) (P < 0.01), interleukin 18 (IL-18) (P < 0.05), and C-reactive protein (CRP) (P < 0.01) genes. These data clearly show that chitosan-propolis nanoparticle/Met may have a protective effect on this inflammatory disorder. Conclusions: Taken together, the final results of this study are consistent with the assumption that chitosan-propolis nanoparticle /Met had ameliorative and protective effects against the harmful effects of EV. Although it is hypothesized that ameliorative effects might have been involved, the fundamental pathways remain to be illuminated.

Publisher

Briefland

Subject

General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3