Dimethyl Fumarate Attenuates Methotrexate Hepatotoxicity in Mice Via the Nrf2/HO-1/Anti-Apoptotic Signaling Pathway

Author:

Mohammad Karimi AliORCID,Salehcheh MaryamORCID,Rashno MohammadORCID,Khorsandi LayasadatORCID,Kalantari Heibatullah,Khodayar Mohammad JavadORCID

Abstract

Background: Methotrexate (MTX), a folate antagonist used to treat cancer and inflammatory diseases, is known to generate reactive oxygen species. Objectives: The research investigates the impact of dimethyl fumarate (DMF), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, on an MTX-induced mouse hepatotoxicity model. Methods: Forty-two mice were divided into 6 groups: control, MTX, DMF 120, and 3 groups of MTX co-treated with DMF 30, 60, and 120 mg/kg. Dimethyl fumarate was gavaged once daily for 10 days. On the fifth day, the animals received MTX 20 mg/kg intraperitoneally. On the eleventh day, the animals were sacrificed, and serum and liver samples were collected to assess the level of oxidative/anti-oxidative and apoptotic/anti-apoptotic markers. Results: Dimethyl fumarate prevented the increase of liver function enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) induced by MTX (P < 0.001). It prevented the increase in AST and ALT levels, indicating liver recovery (P < 0.001). Furthermore, DMF restored antioxidant markers superoxide dismutase, catalase, glutathione peroxidase, and total thiol while reducing the level of thiobarbituric acid reactive substances (P < 0.001). Dimethyl fumarate also downregulated hepatic mRNA expression of caspase 3 and upregulated Bcl-2, heme oxygenase 1, and Nrf2 genes in MTX co-treated DMF groups. Conclusions: Dimethyl fumarate alleviates oxidative stress and apoptosis, which may be achieved by the Nrf2/HO-1 pathway. Therefore, DMF may be clinically effective in preventing or treating MTX-induced hepatotoxicity.

Publisher

Briefland

Subject

General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3