A Hybrid Intelligent Approach to Breast Cancer Diagnosis and Treatment Using Grey Wolf Optimization Algorithm

Author:

Dehghan Mohammad JafarORCID,Azizi AmirabbasORCID

Abstract

Background: Breast cancer is the second leading cause of death in women. The advent of machine learning (ML) has opened up a world of possibilities for the discovery and formulation of drugs. It is an exciting development that could revolutionize the pharmaceutical industry. By leveraging ML algorithms, researchers can now identify disease-related targets with greater accuracy. Additionally, ML techniques can be used to predict the toxicity and pharmacokinetics of potential drug candidates. Objectives: The main purpose of ML techniques, such as feature selection (FS) and classification, is to develop a learning model based on datasets. Methods: This paper proposed a hybrid intelligent approach using a Binary Grey Wolf Optimization Algorithm and a Self-Organizing Fuzzy Logic Classifier (BGWO-SOF) for breast cancer diagnosis. The proposed FS approach can not only reduce the complexity of feature space but can also avoid overfitting and improve the learning process. The performance of this proposed approach was evaluated on the 10-fold cross-validation technique and the Wisconsin Diagnostic Breast Cancer dataset. Although the performance of breast cancer detection is highly dependent on classification accuracy, most good classification methods have an essential flaw in that they simply seek to maximize the accuracy of classification while ignoring the costs of misclassification among various categories. This is even more important in classification problems when the initial set of features is large. With such a large number of features, it is of special interest to search for a dependency between an optimal number of selected features and the accuracy of the classification model. Results: In experiments, standard performance evaluation metrics, including accuracy, F-measure, precision, sensitivity, and specificity, were performed. The evaluation results demonstrated that the BGWO-SOF approach achieves 99.70% accuracy and 99.66% F-measure, which outperforms other state-of-the-art methods. Conclusions: During the comparison of the results, it was observed that the proposed approach gives better or more competitive results than other state-of-the-art methods. By leveraging the power of ML algorithms and artificial intelligence (AI) and the findings of the current study, we can optimize the selection of natural pharmaceutical products for the treatment of breast cancer and maximize their efficacy.

Publisher

Briefland

Subject

General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3