Extreme heterogeneity in the microrheology of lamellar surfactant gels analyzed with neural networks

Author:

Watts Moore Owen11ORCID,Lewis Conor11ORCID,Ross Thomas11ORCID,Waigh Thomas Andrew11ORCID,Korabel Nickolay1ORCID,Mendoza Cesar2ORCID

Affiliation:

1. The University of Manchester

2. Unilever Research & Development

Abstract

The heterogeneity of the viscoelasticity of a lamellar gel network based on cetyl-trimethylammonium chloride and cetostearyl alcohol was studied using particle-tracking microrheology. A recurrent neural network (RNN) architecture was used for estimating the Hurst exponent, H, on small sections of tracks of probe spheres moving with fractional Brownian motion. Thus, dynamic segmentation of tracks via neural networks was used in microrheology and it is significantly more accurate than using mean square displacements (MSDs). An ensemble of 414 particles produces a MSD that is subdiffusive in time, t, with a power law of the form t0.74±0.02, indicating power law viscoelasticity. RNN analysis of the probability distributions of H, combined with detailed analysis of the time-averaged MSDs of individual tracks, revealed diverse diffusion processes belied by the simple scaling of the ensemble MSD, such as caging phenomena, which give rise to the complex viscoelasticity of lamellar gels. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3