Abstract
Continuous rate-based neural networks have been widely applied to modeling the dynamics of cortical circuits. However, cortical neurons in the brain exhibit irregular spiking activity with complex correlation structures that cannot be captured by mean firing rate alone. To close this gap, we consider a framework for modeling irregular spiking activity, called the moment neural network, which naturally generalizes rate models to second-order moments and can accurately capture the firing statistics of spiking neural networks. We propose an efficient numerical method that allows for rapid evaluation of moment mappings for neuronal activations without solving the underlying Fokker-Planck equation. This allows simulation of coupled interactions of mean firing rate and firing variability of large-scale neural circuits while retaining the advantage of analytical tractability of continuous rate models. We demonstrate how the moment neural network can explain a range of phenomena including diverse Fano factor in networks with quenched disorder and the emergence of irregular oscillatory dynamics in excitation-inhibition networks with delay.
Published by the American Physical Society
2024
Funder
National Natural Science Foundation of China
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献