Affiliation:
1. University of Nottingham
Abstract
We study the dynamics of a classical circuit corresponding to a discrete-time version of the kinetically constrained East model. We show that this classical “Floquet-East” model displays pre-transition behavior which is a dynamical equivalent of the hydrophobic effect in water. For the deterministic version of the model, we prove exactly (i) a change in scaling with size in the probability of inactive space-time regions (akin to the “energy-entropy” crossover of the solvation free energy in water), (ii) a first-order phase transition in the dynamical large deviations, (iii) the existence of the optimal geometry for local phase separation to accommodate space-time solutes, and (iv) a dynamical analog of “hydrophobic collapse.”
Published by the American Physical Society
2024
Funder
Engineering and Physical Sciences Research Council
Leverhulme Trust
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献