Pressure and speed of sound in two-flavor color-superconducting quark matter at next-to-leading order

Author:

Geißel Andreas1ORCID,Gorda Tyler213ORCID,Braun Jens13

Affiliation:

1. Technische Universität Darmstadt

2. Goethe Universität

3. GSI Helmholtzzentrum für Schwerionenforschung GmbH

Abstract

Deconfined quark matter at asymptotically high densities is weakly coupled, due to the asymptotic freedom of quantum chromodynamics. In this weak-coupling regime, bulk thermodynamic properties of quark matter, assuming a trivial ground state, are currently known to partial next-to-next-to-next-to-leading order. However, the ground state at high densities is expected to be a color superconductor, in which the excitation spectrum of (at least some) quarks exhibit a gap with a nonperturbative dependence on the strong coupling. In this work, we calculate the thermodynamic properties of color-superconducting quark matter at high densities and zero temperature at next-to-leading order (NLO) in the coupling in the presence of a finite gap. We work in the limit of two massless quark flavors, which corresponds to deconfined symmetric nuclear matter, and further assume that the gap is small compared to the quark chemical potential. In these limits, we find that the NLO corrections to the pressure and speed of sound are comparable in size to the leading-order effects of the gap, and further increase both quantities above their values for nonsuperconducting quark matter. We also provide a parametrization of the NLO speed of sound to guide phenomenology in the high-density region, and we furthermore comment on whether our findings should be expected to extend to the case of three-flavor quark matter of relevance to neutron stars. Published by the American Physical Society 2024

Funder

Deutsche Forschungsgemeinschaft

European Research Council

State of Hesse

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3