Scaling solutions for current-carrying cosmic string networks

Author:

Pimenta F. C. N. Q.1ORCID,Martins C. J. A. P.123ORCID

Affiliation:

1. Centro de Astrofísica da Universidade do Porto

2. Instituto de Astrofísica e Ciências do Espaço

3. Universidade do Porto

Abstract

Cosmic string networks are the best motivated relics of cosmological phase transitions, being unavoidable in many physically plausible extensions of the Standard Model. Most studies, including those providing constraints from and forecasts of their observational signals, rely on assumptions of featureless networks, neglecting the additional degrees of freedom on the string worldsheet, e.g., charges and currents, which are all but unavoidable in physically realistic models. An extension of the canonical velocity-dependent one-scale model, accounting for all such possible degrees of freedom, has been recently developed. Here we improve its physical interpretation by studying and classifying its possible asymptotic scaling solutions, and in particular how they are affected by the expansion of the Universe and the available energy loss or transfer mechanisms. We find three classes of solutions. For sufficiently fast expansion rates the charges and currents decay and one asymptotes to the Nambu-Goto case, while for slower expansion rates they can dominate the network dynamics. In between the two there is a third regime in which the network, including its charge and current, reaches full scaling. Under specific but plausible assumptions, this intermediate regime corresponds to the matter-dominated era. Our results agree with, and significantly extend, those of previous studies. Published by the American Physical Society 2024

Funder

Fundação para a Ciência e a Tecnologia

European Social Fund

Nvidia

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3