New framework to follow up candidates from continuous gravitational-wave searches

Author:

Covas P. B.12ORCID,Prix R.12ORCID,Martins J.12

Affiliation:

1. Max Planck Institute for Gravitational Physics

2. Leibniz Universität Hannover

Abstract

Searches for continuous gravitational waves from unknown neutron stars are limited in sensitivity due to their high computational cost. For this reason, developing new methods or improving existing ones can increase the probability of making a detection. In this paper we present a new framework that uses Markov chain Monte Carlo (MCMC) or nested sampling methods to follow up candidates of continuous gravitational-wave searches. This framework aims to go beyond the capabilities of (which is limited to the sampler), by allowing a flexible choice of sampling algorithm (using as a wrapper) and multidimensional correlated prior distributions. We show that MCMC and nested sampling methods can recover the maximum posterior point for much bigger parameter-space regions than previously thought (including for sources in binary systems), and we present tests that examine the capabilities of the new framework: a comparison between the , , and samplers, the usage of correlated priors, and its improved computational cost. Published by the American Physical Society 2024

Funder

Horizon 2020 Framework Programme

H2020 Marie Sk?odowska-Curie Actions

Max-Planck-Institut für Physik Komplexer Systeme

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3