Anharmonic effects in nuclear recoils from sub-GeV dark matter

Author:

Lin Tongyan1,Shen Chia-Hsien12ORCID,Sholapurkar Mukul1ORCID,Villarama Ethan1

Affiliation:

1. Department of Physics, University of California, San Diego, California 92093, USA

2. Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei 10617, Taiwan

Abstract

Direct detection experiments are looking for nuclear recoils from scattering of sub-GeV dark matter (DM) in crystals, and have thresholds as low as 10eV or DM masses of 100MeV. Future experiments are aiming for even lower thresholds. At such low energies, the free nuclear recoil prescription breaks down, and the relevant final states are phonons in the crystal. Scattering rates into single as well as multiple phonons have already been computed for a harmonic crystal. However, crystals typically exhibit some anharmonicity, which can significantly impact scattering rates in certain kinematic regimes. In this work, we estimate the impact of anharmonic effects on scattering rates for DM in the mass range 110MeV, where the details of multiphonon production are most important. Using a simple model of a nucleus in a bound potential, we find that anharmonicity can modify the scattering rates by up to two orders of magnitude for DM masses of O(MeV). However, such effects are primarily present at high energies where the rates are suppressed, and thus only relevant for very large DM cross sections. We show that anharmonic effects are negligible for masses larger than 10MeV. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Ministry of Education

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3