Angular modulation of nonlinear Breit-Wheeler yield by vacuum dichroism

Author:

Chen Jia-Ding1,Dai Ya-Nan2,Zhuang Kai-Hong1,Jiang Jing-Jing1,Shen Baifei1,Chen Yue-Yue1

Affiliation:

1. Shanghai Normal University

2. Shenzhen Technology University

Abstract

Vacuum polarization is numerically investigated for the interaction between a GeV electron beam and a counterpropagating ultraintense laser pulse in the quantum radiation-dominated regime. We identify a signal of vacuum polarization in pair density using a straightforward one-stage setup, circumventing the challenge of preparations of highly polarized probe photons or precise measurements of photon polarization. In our scheme, most electrons are scattered in the direction of laser propagation while emitting substantial linearly polarized gamma photons. These photons undergo vacuum birefringence and dichroism before decaying into electron-positron pairs via the nonlinear Breit-Wheeler process. We demonstrate that vacuum dichroism enhances the purity of linear polarization, which suppresses the overall yield of electron-positron pairs and allows energetic photons to penetrate deeper into the laser pulse. The pairs produced by these energetic photons are more likely to be deflected into small-angle regions rather than being reflected, leading to an enhancement of pair yield in forward scattering. The difference in positron yield may have potential applications in measuring vacuum polarization effect in future laser-particle experiments. Published by the American Physical Society 2025

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3