Abstract
Suppression of the coffee ring effect is desirable in many industrial applications which utilize colloidal deposition from an evaporating liquid. Here we focus on the role of particle arrest at the liquid-air interface (surface capture) which occurs at high evaporation rates. It is known experimentally that this phenomenon inhibits particles from reaching the contact line, leading to a deposit which is closer to uniform. We are able to describe this effect using a simple 1D modeling framework and, utilizing asymptotic theory, parametrize our model by the ratio of the vertical advection and diffusion timescales. We show that our model is consistent with existing frameworks for small values of this parameter, but also predicts the surface layer formation seen experimentally at high evaporation rates. The formation of a surface layer leads to a deposit morphology which mimics the evaporative flux density and so is closest to uniform when evaporation has a constant strength across the liquid-air interface.
Published by the American Physical Society
2024
Funder
Engineering and Physical Sciences Research Council
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献