Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules

Author:

Berry Dominic W.1ORCID,Tong Yu233ORCID,Khattar Tanuj4ORCID,White Alec5ORCID,Kim Tae In6ORCID,Low Guang Hao4ORCID,Boixo Sergio4ORCID,Ding Zhiyan7ORCID,Lin Lin7ORCID,Lee Seunghoon62ORCID,Chan Garnet Kin-Lic2,Babbush Ryan4,Rubin Nicholas C.4

Affiliation:

1. Macquarie University

2. California Institute of Technology

3. Duke University

4. Google Quantum AI

5. Quantum Simulation Technologies Inc.

6. Seoul National University

7. University of California, Berkeley

Abstract

Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7× lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3×1010 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system. Published by the American Physical Society 2025

Funder

Australian Research Council

U.S. Department of Energy

Office of Science

National Research Foundation of Korea

National Quantum Information Science Research Centers

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3