Optimal Zeno Dragging for Quantum Control: A Shortcut to Zeno with Action-Based Scheduling Optimization

Author:

Lewalle Philippe12ORCID,Zhang Yipei12,Whaley K. Birgitta12

Affiliation:

1. University of California

2. Berkeley Center for Quantum Information and Computation

Abstract

The quantum Zeno effect asserts that quantum measurements inhibit simultaneous unitary dynamics when the “collapse” events are sufficiently strong and frequent. This applies in the limit of strong continuous measurement or dissipation. It is possible to implement a dissipative control that is known as “Zeno dragging” by dynamically varying the monitored observable, and hence also the eigenstates, which are attractors under Zeno dynamics. This is similar to adiabatic processes, in that the Zeno-dragging fidelity is highest when the rate of eigenstate change is slow compared to the measurement rate. We demonstrate here two theoretical methods for using such dynamics to achieve control of quantum systems. The first, which we shall refer to as “shortcut to Zeno,” is analogous to the shortcuts to adiabaticity (counterdiabatic driving) that are frequently used to accelerate unitary adiabatic evolution. In the second approach, we apply the Chantasri-Dressel-Jordan stochastic action [PRA 88, 042110 (2013)], and demonstrate that the extremal-probability readout paths derived from this are well suited to setting up a Pontryagin-style optimization of the Zeno-dragging schedule. A fundamental contribution of the latter approach is to show that an action suitable for measurement-driven control optimization can be derived quite generally from statistical arguments. Implementing these methods on the Zeno dragging of a qubit, we find that both approaches yield the same solution, namely, that the optimal control is a unitary that matches the motion of the Zeno-monitored eigenstate. We then show that such a solution can be more robust than a unitary-only operation and we comment on solvable generalizations of our qubit example embedded in larger systems. These methods open up new pathways toward systematically developing dynamic control of Zeno subspaces to realize dissipatively stabilized quantum operations. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

National Quantum Information Science Research Centers

Quantum Systems Accelerator

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Action formalism for geometric phases from self-closing quantum trajectories;Journal of Physics A: Mathematical and Theoretical;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3