Coherent Acoustic Control of Defect Orbital States in the Strong-Driving Limit

Author:

McCullian B.A.1ORCID,Sharma V.1ORCID,Chen H.Y.1,Crossman J.C.1ORCID,Mueller E.J.1ORCID,Fuchs G.D.12ORCID

Affiliation:

1. Cornell University

2. Kavli Institute at Cornell for Nanoscale Science

Abstract

We use a bulk acoustic wave resonator to demonstrate coherent control of the excited orbital states in a diamond nitrogen-vacancy (NV) center at cryogenic temperature. Coherent quantum control is an essential tool for understanding and mitigating decoherence. Moreover, characterizing and controlling orbital states is a central challenge for quantum networking, where optical coherence is tied to orbital coherence. We study resonant multiphonon orbital Rabi oscillations in both the frequency and time domain, extracting the strength of the orbital-phonon interactions and the coherence of the acoustically driven orbital states. We reach the strong-driving limit, where the physics is dominated by the coupling induced by the acoustic waves. We find agreement between our measurements, quantum master-equation simulations, and a Landau-Zener transition model in the strong-driving limit. Using perturbation theory, we derive an expression for the orbital Rabi frequency versus the acoustic drive strength that is nonperturbative in the drive strength and agrees well with our measurements for all acoustic powers. Motivated by continuous-wave spin-resonance-based decoherence protection schemes, we model the orbital decoherence and find good agreement between our model and our measured few-to-several-nanoseconds orbital decoherence times. We discuss the outlook for orbital decoherence protection. Published by the American Physical Society 2024

Funder

Office of Naval Research

National Science Foundation

Materials Research Science and Engineering Centers

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3