Edge Modes and Symmetry-Protected Topological States in Open Quantum Systems

Author:

Paszko Dawid1ORCID,Rose Dominic C.1ORCID,Szymańska Marzena H.1,Pal Arijeet1

Affiliation:

1. University College London

Abstract

Topological order offers possibilities for processing quantum information that can be immune to imperfections. However, the question of its stability out of equilibrium is relevant for experiments, where coupling to an environment is unavoidable. In this work, we demonstrate the robustness of certain aspects of Z2×Z2 symmetry-protected topological (SPT) order against a wide class of dissipation channels in the Lindblad and quantum trajectory formalisms of an open quantum system. This is illustrated using the one-dimensional ZXZ cluster Hamiltonian along with Pauli-string jump operators. We show that certain choices of dissipation retaining strong symmetries support a steady-state manifold consisting of two nonlocal qubits and for Hamiltonian perturbations preserving the global symmetry, states in this manifold remain metastable. In contrast, this metastability is destroyed upon breaking the above-mentioned symmetry. While the localized qubits of the cluster Hamiltonian are not conserved by the Lindbladian evolution, they do correspond to weak symmetries and thus retain a memory of their initial state at all times in the quantum trajectories. We utilize this feature to construct protocols to retrieve the quantum information either by monitoring jumps or error mitigation. Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases and opens up the possibility of engineering entangled states relevant to quantum information processing. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

European Research Council

University College London (UCL) Graduate Research Scholarship

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3