Flying-cat parity checks for quantum error correction

Author:

McIntyre Z. M.1ORCID,Coish W. A.1ORCID

Affiliation:

1. McGill University

Abstract

Long range, multiqubit parity checks have applications in both quantum error correction and measurement-based entanglement generation. Such parity checks could be performed using qubit-state-dependent phase shifts on propagating pulses of light described by coherent states |α of the electromagnetic field. We consider “flying-cat” parity checks based on an entangling operation that is quantum nondemolition for Schrödinger's cat states |α±|α. This operation encodes parity information in the phase of maximally distinguishable coherent states |±α, which can be read out using a phase-sensitive measurement of the electromagnetic field. In contrast to many implementations, where single-qubit errors and measurement errors can be treated as independent, photon loss during flying-cat parity checks introduces errors on physical qubits at a rate that is anticorrelated with the probability for measurement errors. We analyze this trade-off for three-qubit parity checks, which are a requirement for universal fault-tolerant quantum computing with the subsystem surface code. We further show how a six-qubit entangled “tetrahedron” state can be prepared using these three-qubit parity checks. The tetrahedron state can be used as a resource for controlled quantum teleportation of a two-qubit state or as a source of shared randomness with potential applications in three-party quantum key distribution. Finally, we provide conditions for performing high-quality flying-cat parity checks in a state-of-the-art circuit QED architecture, accounting for qubit decoherence, internal cavity losses, and finite-duration pulses, in addition to transmission losses. Published by the American Physical Society 2024

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec – Nature et technologies

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3