Bridging the small and large in twisted transition metal dichalcogenide homobilayers: A tight binding model capturing orbital interference and topology across a wide range of twist angles

Author:

Crépel Valentin1ORCID,Millis Andrew12ORCID

Affiliation:

1. Flatiron Institute

2. Columbia University

Abstract

Many of the important phases observed in twisted transition metal dichalcogenide homobilayers are driven by short-range interactions, which should be captured by a local tight binding description since no Wannier obstruction exists for these systems. Yet, published theoretical descriptions have been mutually inconsistent, with honeycomb lattice tight binding models adopted for some twist angles, triangular lattice models adopted for others, and with tight binding models forsaken in favor of band projected continuum models in many numerical simulations. Here, we derive and study a minimal model containing both honeycomb orbitals and a triangular site that represents the band physics across a wide range of twist angles. The model provides a natural basis to study the interplay of interaction and topology in these heterostructures. It elucidates from generic features of the bilayer the sequence of Chern numbers occurring as twist angle is varied, and the microscopic origin of the magic angle at which flat-band physics occurs. At integer filling, the model successfully captures the Chern ferromagnetic and van Hove-driven antiferromagnetic insulators experimentally observed for small and large angles, respectively, and allows a straightforward calculation of the magnetoelectric properties of the system. Published by the American Physical Society 2024

Funder

Simons Foundation

National Science Foundation

Materials Research Science and Engineering Center, Harvard University

Columbia University

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3