Entropy production rate and correlations in a cavity magnomechanical system

Author:

Edet Collins O.12ORCID,Asjad Muhammad3ORCID,Dutykh Denys34ORCID,Ali Norshamsuri1ORCID,Abah Obinna5ORCID

Affiliation:

1. Universiti Malaysia Perlis

2. University of Cross River State

3. Khalifa University

4. Causal Dynamics Pty Ltd

5. Newcastle University

Abstract

We present the irreversibility generated by a stationary cavity magnomechanical system composed of a yttrium iron garnet (YIG) sphere with a diameter of a few hundred micrometers inside a microwave cavity. In this system, the magnons, i.e., collective spin excitations in the sphere, are coupled to the cavity photon mode via magnetic dipole interaction and to the phonon mode via magnetostrictive force (optomechanical-like). We employ the quantum phase-space formulation of the entropy change to evaluate the steady-state entropy production rate and associated quantum correlation in the system. We find that the behavior of the entropy flow between the cavity photon mode and the phonon mode is determined by the magnon-photon coupling and the cavity photon dissipation rate. Interestingly, the entropy production rate can increase/decrease depending on the strength of the magnon-photon coupling and the detuning parameters. We further show that the amount of correlations between the magnon and phonon modes is linked to the irreversibility generated in the system for small magnon-photon coupling. Our results demonstrate the possibility of exploring irreversibility in driven magnon-based hybrid quantum systems and open a promising route for quantum thermal applications. Published by the American Physical Society 2024

Funder

Ministry of Higher Education, Malaysia

Khalifa University of Science, Technology and Research

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3