Entanglement membrane in exactly solvable lattice models

Author:

Rampp Michael A.1ORCID,Rather Suhail A.1,Claeys Pieter W.1ORCID

Affiliation:

1. Max Planck Institute for the Physics of Complex Systems

Abstract

Entanglement membrane theory is an effective coarse-grained description of entanglement dynamics and operator growth in chaotic quantum many-body systems. The fundamental quantity characterizing the membrane is the entanglement line tension. However, determining the entanglement line tension for microscopic models is in general exponentially difficult. We compute the entanglement line tension in a recently introduced class of exactly solvable yet chaotic unitary circuits, so-called generalized dual-unitary circuits, obtaining a nontrivial form that gives rise to a hierarchy of velocity scales with vE<vB. For the lowest level of the hierarchy, L¯2 circuits, the entanglement line tension can be computed entirely, while for the higher levels the solvability is reduced to certain regions in spacetime. This partial solvability enables us to place bounds on the entanglement velocity. We find that L¯2 circuits saturate certain bounds on entanglement growth that are also saturated in holographic models. Furthermore, we relate the entanglement line tension to temporal entanglement and correlation functions. We also develop methods of constructing generalized dual-unitary gates, including constructions based on complex Hadamard matrices that exhibit additional solvability properties and constructions that display behavior unique to local dimension greater than or equal to three. Our results shed light on entanglement membrane theory in microscopic Floquet lattice models and enable us to perform nontrivial checks on the validity of its predictions by comparison to exact and numerical calculations. Moreover, they demonstrate that generalized dual-unitary circuits display a more generic form of information dynamics than dual-unitary circuits. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3