Autoregressive neural quantum states of Fermi Hubbard models

Author:

Ibarra-García-Padilla Eduardo12ORCID,Lange Hannah345ORCID,Melko Roger G.67ORCID,Scalettar Richard T.1ORCID,Carrasquilla Juan8ORCID,Bohrdt Annabelle59ORCID,Khatami Ehsan2ORCID

Affiliation:

1. University of California, Davis

2. San José State University

3. Ludwig-Maximilians-University Munich

4. Max-Planck-Institute for Quantum Optics

5. Munich Center for Quantum Science and Technology

6. University of Waterloo

7. Perimeter Institute

8. Eidgenössische Technische Hochschule Zürich

9. University of Regensburg

Abstract

Neural quantum states (NQSs) have emerged as a powerful ansatz for variational quantum Monte Carlo studies of strongly correlated systems. Here, we apply recurrent neural networks (RNNs) and autoregressive transformer neural networks to the Fermi-Hubbard and the (non-Hermitian) Hatano-Nelson-Hubbard models in one and two dimensions. In both cases, we observe that the convergence of the RNN ansatz is challenged when increasing the interaction strength. We present a physically motivated and easy-to-implement strategy for improving the optimization, namely, by ramping of the model parameters. Furthermore, we investigate the advantages and disadvantages of the autoregressive sampling property of both network architectures. For the Hatano-Nelson-Hubbard model, we identify convergence issues that stem from the autoregressive sampling scheme in combination with the non-Hermitian nature of the model. Our findings provide insights into the challenges of the NQS approach and make the first step towards exploring strongly correlated electrons using this ansatz. Published by the American Physical Society 2025

Funder

U.S. Department of Energy

Office of Science

National Science Foundation

Deutsche Forschungsgemeinschaft

International Max Planck Research School for Quantum Science and Technology

Natural Sciences and Engineering Research Council of Canada

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3