Enhancing quantum state tomography via resource-efficient attention-based neural networks

Author:

Palmieri Adriano Macarone12,Müller-Rigat Guillem12ORCID,Srivastava Anubhav Kumar12ORCID,Lewenstein Maciej123ORCID,Rajchel-Mieldzioć Grzegorz124ORCID,Płodzień Marcin12ORCID

Affiliation:

1. Institut de Ciències Fotòniques

2. Barcelona Institute of Science and Technology

3. ICREA

4. NASK National Research Institute

Abstract

In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits. Published by the American Physical Society 2024

Funder

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

European Commission

Horizon 2020

European Regional Development Fund

'la Caixa' Foundation

Agència de Gestió d'Ajuts Universitaris i de Recerca

Barcelona Supercomputing Center

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3