Collimator challenges at SuperKEKB and their countermeasures using nonlinear collimator

Author:

Terui Shinji1ORCID,Funakoshi Yoshihiro1,Ishibashi Takuya1ORCID,Koiso Haruyo1,Masuzawa Mika1,Morikawa Yu1,Morita Akio1,Nakamura Shu1,Nakayama Hiroyuki1ORCID,Ohnishi Yukiyoshi1ORCID,Ohmi Kazuhito1,Shibata Kyo1,Shirai Mitsuru1,Suetsugu Yusuke1,Tobiyama Makoto1,Ueki Ryuichi1,Zhou Demin1ORCID,Oide Katsunobu2ORCID,Natochii Andrii3ORCID

Affiliation:

1. High Energy Accelerator Research Organization (KEK)

2. University of Geneva

3. Brookhaven National Laboratory

Abstract

In SuperKEKB, movable collimators reduce the beam background noise in the Belle II particle detector and protect crucial machine components, such as final focusing superconducting quadrupole magnets (QCS), from abnormal beam losses. The challenges related to the collimator, which were not properly considered at the time of SuperKEKB design, have surfaced through experience with its operation. In this paper, we report the collimator operation strategy in SuperKEKB. In addition, a significant challenge of beam collimation due to the future increase in the beam background is highlighted. We also discuss another issue caused by unexpected and sudden beam losses in the machine that damage collimators, leading to weaker beam collimation performance and an increase in transverse impedance. Furthermore, we introduce a novel collimation approach called the nonlinear collimator (NLC) to address these challenges. We detail the concept of NLC and evaluate their effectiveness by assessing the collimator impedance, beam background reduction, and impact on the dynamic aperture. The possibility of using NLCs as absorber collimators to counteract events that damage the collimator is also shown to be helpful. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3