Physics-informed tracking of qubit fluctuations

Author:

Berritta Fabrizio1ORCID,Krzywda Jan A.2ORCID,Benestad Jacob3ORCID,van der Heijden Joost4ORCID,Fedele Federico15ORCID,Fallahi Saeed66ORCID,Gardner Geoffrey C.6ORCID,Manfra Michael J.6666,van Nieuwenburg Evert2ORCID,Danon Jeroen3ORCID,Chatterjee Anasua1ORCID,Kuemmeth Ferdinand14ORCID

Affiliation:

1. Niels Bohr Institute

2. Leiden University

3. Norwegian University of Science and Technology

4. QDevil, Quantum Machines

5. University of Oxford

6. Purdue University, West Lafayette

Abstract

Environmental fluctuations degrade the performance of solid-state qubits but can in principle be mitigated by real-time Hamiltonian estimation down to timescales set by the estimation efficiency. We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in real time to a semiconductor spin qubit. The physics-informed strategy propagates a probability distribution inside the quantum controller according to the Fokker-Planck equation, appropriate for describing the effects of nuclear spin diffusion in gallium arsenide. Evaluating and narrowing the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe time conditioned on the previous measurement outcomes, thereby further increasing the estimation efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear spin fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the appropriate update equation to capture their distinct noise sources. Published by the American Physical Society 2024

Funder

Research Council of Norway

European Union’s Horizon 2020

QuantERA II

Novo Nordisk Foundation under Challenge Programme

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3