Affiliation:
1. Université Paris-Saclay
2. Centre de Nanosciences et de Nanotechnologies (C2N)
Abstract
Coherent acoustic phonon generation and detection assisted by optical resonances are at the core of efficient optophononic transduction processes. However, when one is dealing with a single optical resonance, the optimum generation and detection conditions occur at different laser wavelengths, i.e., different detunings from the cavity mode. In this work, we theoretically propose and experimentally demonstrate the use of elliptical micropillars to reach these conditions simultaneously at a single wavelength. Elliptical micropillar optophononic resonators present two optical modes with orthogonal polarizations at different wavelengths. By using a cross-polarization-scheme pump-probe experiment, we exploit the mode splitting and couple the pump beam to one mode while the probe is detuned from the other mode. In this way, at a particular micropillar ellipticity, the phonon-generation and phonon-detection processes are both enhanced. We report an enhancement of the coherent-phonon-generation-detection process by a factor of approximately 3.1 when comparing the highest achievable signals from elliptical and circular micropillars. Our findings constitute a step forward in tailoring light-matter interaction for more-efficient ultrahigh-frequency optophononic devices.
Published by the American Physical Society
2024
Funder
European Research Council
Labex NanoSaclay
Publisher
American Physical Society (APS)