Decomposing Imaginary-Time Feynman Diagrams Using Separable Basis Functions: Anderson Impurity Model Strong-Coupling Expansion

Author:

Kaye Jason11ORCID,Huang Zhen21,Strand Hugo U. R.34ORCID,Golež Denis56

Affiliation:

1. Flatiron Institute

2. University of California

3. Örebro University

4. Radboud University

5. Jožef Stefan Institute

6. University of Ljubljana

Abstract

We present a deterministic algorithm for the efficient evaluation of imaginary-time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary-time Green’s functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary-time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong-coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an Mth-order diagram at inverse temperature β and spectral width ωmax from O((βωmax)2M1) for a direct quadrature to O(M(log(βωmax))M+1), with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multiband impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca2RuO4, demonstrating the promise of the method for modeling realistic strongly correlated multiband materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust blackbox evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams. Published by the American Physical Society 2024

Funder

Simons Foundation

H2020 European Research Council

Horizon 2020 Framework Programme

Vetenskapsrådet

Javna Agencija za Raziskovalno Dejavnost RS

National Academic Infrastructure for Supercomputing in Sweden

Swedish National Infrastructure for Computing

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3