Electric Field of DNA in Solution: Who Is in Charge?

Author:

Hedley Jonathan G.1ORCID,Coshic Kush2ORCID,Aksimentiev Aleksei2ORCID,Kornyshev Alexei A.131ORCID

Affiliation:

1. Imperial College London

2. University of Illinois at Urbana-Champaign

3. Thomas Young Centre for Theory and Simulation of Materials

Abstract

In solution, DNA, the “most important molecule of life,” is a highly charged macromolecule that bears a unit of negative charge on each phosphate of its sugar-phosphate backbone. Although partially compensated by counterions (cations of the solution) adsorbed at or condensed near it, DNA still produces a substantial electric field in its vicinity, which is screened by buffer electrolytes at longer distances from the DNA. This electric field is experienced by any charged or dipolar species approaching and interacting with the DNA. So far, such a field has been explored predominantly within the scope of a primitive model of the electrolytic solution, not considering more complicated structural effects of the water solvent. In this paper, we investigate the distribution of electric field around DNA using linear response nonlocal electrostatic theory, applied here for helix-specific charge distributions, and compare the predictions of such a theory with specially performed, fully atomistic, large-scale, molecular dynamics simulations. Both approaches are applied to unravel the role of the structure of water at close distances to and within the grooves of a DNA molecule in the formation of the electric field. As predicted by the theory and reported by the simulations, the main finding of this study is that oscillations in the electrostatic potential distribution are present around DNA, caused by the overscreening effect of structured water. Surprisingly, electrolyte ions at physiological concentrations do not strongly disrupt these oscillations and are rather distributed according to these oscillating patterns, indicating that water structural effects dominate the short-range electrostatics. We also show that (i) structured water adsorbed in the grooves of DNA leads to a positive electrostatic potential core relative to the bulk, (ii) the Debye length some 10 Å away from the DNA surface is reduced, effectively renormalized by the helical pitch of the DNA molecule, and (iii) Lorentzian contributions to the nonlocal dielectric function of water, effectively reducing the dielectric constant close to the DNA surface, enhance the overall electric field. The impressive agreement between the atomistic simulations and the developed theory substantiates the use of nonlocal electrostatics when considering solvent effects in molecular processes in biology. Published by the American Physical Society 2024

Funder

Leverhulme Trust

Human Frontier Science Program

National Institute of General Medical Sciences

Texas Advanced Computing Center and ACCESS

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3