Strong effects of thermally induced low-spin to high-spin crossover on transport properties of correlated metals

Author:

Moser Johanna1ORCID,Mravlje Jernej23ORCID,Aichhorn Markus1ORCID

Affiliation:

1. NAWI Graz

2. Jožef Stefan Institute

3. University of Ljubljana

Abstract

We use dynamical mean-field theory to study how electronic transport in multiorbital metals is influenced by correlated (nominally) empty orbitals that are in proximity to the Fermi level. Specifically, we study 2+1 orbital and 3+2 orbital (i.e., t2g+eg) models on a Bethe lattice with a crystal field that is set so that the higher lying orbitals are nearly empty at low temperatures but get a non-negligible occupancy at elevated temperature. The high temperature regime is characterized by thermal activation of carriers leading to higher magnetic response (i.e., thermally induced low-spin to high-spin transition) and substantial influence on resistivity, where one can distinguish two counteracting effects: increased scattering due to formation of high spin and increased scattering phase space on one hand and additional parallel conduction channel on the other. The former effect is stronger and one may identify cases where resistivity increases by a factor of 3 at high temperatures even though the occupancy of the unoccupied band remains small (<10%). We discuss implications of our findings for transport properties of correlated materials. Published by the American Physical Society 2025

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3