Bonding and antibonding electromagnetic coupling in two interacting toroidal metamolecules

Author:

Wu Tong1,Evlyukhin Andrey B.22ORCID,Tuz Vladimir R.13ORCID

Affiliation:

1. Jilin University

2. Leibniz University Hannover

3. V. N. Karazin Kharkiv National University

Abstract

The existence of a toroidal-like eigenmode and its electromagnetic coupling in a system of dielectric particles are studied. A constituent structure (metamolecule) is made of a ring consisting of the radial arrangement of several vertically standing dielectric disks (meta-atoms). In the eigenstate of the given metamolecule, the second-order term related to the exact electric dipole in the multipole decomposition is much greater than the first-order term. This eigenstate is defined as a toroidal-like mode. Then, the characteristics of a system (metamacromolecule) composed of two identical rings are studied in both eigen- and excited states to reveal the peculiarities of the toroidal-like mode coupling. Similar to the well-known electric dipole-dipole and magnetic dipole-dipole interactions, the interaction of toroidal-like modes also appears in symmetric (bonding) and antisymmetric (antibonding) forms. Their excitation in the metamacromolecule depends on the propagation direction and polarization of the irradiating wave. The manifestation of toroidal-like mode coupling is confirmed by checking the extinction cross section and near-field distributions obtained from the full-wave numerical simulation and microwave experiment. A clear understanding of the nature of toroidicity is important from the fundamental physics perspective and practical implementation of metamaterials operated in such exotic states. Published by the American Physical Society 2024

Funder

Jilin University

Deutsche Forschungsgemeinschaft

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3