Affiliation:
1. Nano Engineering and Spintronic Technologies (NEST) Group, Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom
2. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
Abstract
Magnetic skyrmions are nanoscale spin textures whose thermal stability originates from the nontrivial topology in nature. Recently, a plethora of topological spin textures have been theoretically predicted or experimentally observed, enriching the diversity of the skyrmionic family. In this work, we theoretically demonstrate the stabilities of various topological spin textures against homochiral states in chiral magnets, including chiral bobbers, dipole strings, and skyrmion tubes. They can be effectively classified by the associated topological Hall signals. Multiple transition paths are found among these textures, mediated by Bloch-point singularities, and the topological protection property here can be manifested by a finite energy barrier with the saddle point corresponding to the Bloch-point creation/destruction. By carefully modulating the local property of a surface, such as interfacial Dzyaloshinskii-Moriya interaction induced by breaking the structural symmetry, the energy landscape of a magnetic system can be tailored decisively. Significantly, the proposed scenario also enables the manipulation of stabilities and transition barriers of these textures, even accompanied by the discovery of ground-state chiral bobbers. This study may raise great expectations on the coexistence of topological spin textures as spintronics-based information carriers for future applications.
Published by the American Physical Society
2024
Funder
Engineering and Physical Sciences Research Council
University of Manchester
China Scholarship Council
Publisher
American Physical Society (APS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献