Non-Hermitian zero-energy pinning of Andreev and Majorana bound states in superconductor-semiconductor systems

Author:

Cayao Jorge1ORCID

Affiliation:

1. Uppsala University

Abstract

The emergence of Majorana bound states in finite length superconductor-semiconductor hybrid systems has been predicted to occur in the form of oscillatory energy levels with parity crossings around zero energy. Each zero-energy crossing is expected to produce a quantized zero-bias conductance peak but several studies have reported conductance peaks pinned at zero energy over a range of Zeeman fields, whose origin, however, is not clear. In this work, we consider superconducting systems with spin-orbit coupling under a Zeeman field and demonstrate that non-Hermitian effects, due to coupling to ferromagnet leads, induce zero-energy pinning of Majorana and trivial Andreev bound states. We find that this zero-energy pinning effect occurs due to the formation of non-Hermitian spectral degeneracies known as exceptional points, whose emergence can be controlled by the interplay of non-Hermiticity, the applied Zeeman field, and chemical potentials. Moreover, depending on the non-Hermitian spatial profile, we find that non-Hermiticity changes the single point Hermitian topological phase transition into a flattened zero energy line bounded by exceptional points from multiple low energy levels. This seemingly innocent change notably enables a gap closing well below the Hermitian topological phase transition, which can be in principle simpler to achieve. Furthermore, we reveal that the energy gaps separating Majorana and trivial Andreev bound states from the quasicontinuum remain robust for the values that give rise to the zero-energy pinning effect. While reasonable values of non-Hermiticity can be indeed beneficial, very strong non-Hermitian effects can be detrimental as it might destroy superconductivity. Our findings can be therefore useful for understanding the zero-energy pinning of trivial and topological states in Majorana devices. Published by the American Physical Society 2024

Funder

Vetenskapsrådet

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3