A Comparative Study of Endoderm Differentiation Between Activin A and Small Molecules

Author:

Li Qiang1,Li Jin2,Wang Ping1,He Xiaoqun1,Hong Mingzhao1,Liu Feng1

Affiliation:

1. Department of Endocrinology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen 518106, Guangdong Province, P.R. China

2. Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, Hunan, PR China

Abstract

AbstractSmall molecules such as ROCK inhibitors (Fasudil) and inducer of definitive endoderm 1 (IDE1) can promote differentiation of definitive endoderm, but their effects remain controversial. Therefore, we attempted to verify the effect of these small molecules on promoting definitive endoderm differentiation and found that Fasudil or IDE1 alone could not achieve a similar effect as activin A. On the contrary, CHIR99021 could efficiently promote definitive endoderm differentiation. Nearly 43.4% of experimental cells were SRY-box transcription factor 17 (SOX17)-positive under the synergistic effect of IDE1 and CHIR99021, but its ability to differentiate towards definitive endoderm was still insufficient. Transcriptional analysis and comparison of IDE1 and CHIR99021 synergistic groups (IC) and activin A and CHIR99021 synergistic groups (AC) showed significantly down-regulated definitive endoderm markers in the IC group compared with those in the AC group and the differences between the two groups were mainly due to bone morphogenetic proteins (BMP4) and fibroblast growth factor 17 (FGF17). Further single-cell transcriptome analysis revealed lower expression of BMP4 in SOX17-positive populations, while mothers against decapentaplegic homolog (SMAD) protein translation signal and FGF17 in the AC group were higher than that in the IC group. Western blot analysis showed a significant difference in levels of p-SMAD2/3 between AC and IC groups, which suggests that regulating p-SMAD2/3 may provide a reference to improve the differentiation of definitive endoderm.

Publisher

Georg Thieme Verlag KG

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3