Fresh Cadaver Simulation Model with Continuous Extracorporeal Circulation as a Training Platform for Intracranial High-Flow Bypass: Technical Note and Rheologic Feasibility Evaluation

Author:

Santori Alejandro Mercado12,Arancibia María Sol12,Andaluz Norberto134ORCID

Affiliation:

1. Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States

2. Servicio de Neurocirugía, Hospital Militar Regional Mendoza, Mendoza, Argentina

3. Comprehensive Stroke Center at University of Cincinnati Gardner Neuroscience Institute, Cincinnati, Ohio, United States

4. Mayfield Clinic, Cincinnati, Ohio, United States

Abstract

Abstract Introduction As endovascular techniques evolve toward replacing open surgery, several clinical scenarios still require surgical revascularization. Characterizing this era are decreasing surgical volumes and lack of realistic training models. In an effort to develop lifelike simulation models, we developed a platform for surgical training on high-flow bypass in a fresh cadaver model. Our technique incorporated an extracorporeal circulating system that resembled clinical conditions and confirmed anastomosis efficacy by clinical parameters. Methods On three fresh cadaveric heads, the subtemporal approach exposed the petrous internal carotid artery (ICA) (C2) as the donor vessel for an interposition radial artery graft. Using a continuous extracorporeal circulation system, the bypass model was tested in three fresh heads and verified using clinical technologies. Results Successful C2 ICA to M2 anastomosis was completed in all three fresh heads, confirmed with qualitative and quantitative Doppler, and indocyanine green angiography. Antegrade distribution through graft and revascularized territory was documented on postoperative computed tomography (CT) scan with radiopaque silicone injected through the ipsilateral carotid. Conclusion This study confirmed the feasibility of a totally intracranial high-flow bypass in a fresh cadaver model that achieved hemodynamic features aligned with those of normal middle cerebral artery flow in the clinical setting.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3